399
Views
54
CrossRef citations to date
0
Altmetric
Original Research

Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo

, , , , , & show all
Pages 599-613 | Published online: 18 May 2012

Bibliography

  • O'Driscoll CM, Griffin BT. Biopharmaceutical challenges associated with drugs with low aqueous solubility—the potential impact of lipid-based formulations. Adv Drug Deliv Rev 2008;60:617-24
  • Xavier CP, Lima CF, Rohde M, Quercetin enhances 5-fluorouracil - induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother Pharmacol 2011;68:1449-57
  • Siegelin MD, Reuss DE. Quercetin promotes degradation of surviving and thereby enhances death-receptor–mediated apoptosis in glioma cells. Neuro-oncol 2009;6:123-9
  • Heijnen CG, Haenen GR, van Acker FA, Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicology in Vitro 2001;15(1):3-6
  • Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biology International 2007;31:1245-50
  • Lugli E, Ferraresi R, Roat E, Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. Leukemia Research 2009;33:140-50
  • Sun M, Gao Y, Pei Y, Development of nanosuspension formulation for oral delivery of quercetin. J Biomed Nanotechnol 2010;6:325-32
  • Li H, Zhao X, Ma Y, Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 2009;133:238-44
  • Sahoo NG, Kakran M, Shaal LA, Preparation and characterization of quercetin nanocrystals. J Pharm Sci 2011;100:2379-90
  • Wu TH, Yen FL, Lin LT, Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm 2008;346:160-8
  • Smith AJ, Kavuru P, Wojtas L, Cocrystals of quercetin with improved solubility and oral bioavailability. Mol Pharm 2011;8:1867-76
  • Kim MK, Park KS, Lee C, Enhanced stability and intracellular accumulation of quercetin by protection of the chemically or metabolically susceptible hydroxyl groups with a pivaloxymethyl (POM) promoiety. J Med Chem 2010;53:8597-607
  • Chetoni P, Rossi S, Burgalassi S, Comparison of liposome encapsulated acyclovir with acyclovir ointment: ocular pharmacokineticsin rabbits. J Ocul Pharmacol Ther 2004;20:169-77
  • Jesorka A, Orwar O. Liposomes: technologies and analytical applications. Annu Rev Anal Chem 2008;1:801-32
  • Harrington KJ, Lewanski CR, Northcote AD, Phase I-II study of pegylated liposomal cisplatin (SPI-077™) in patients with inoperable head and neck cancer. Ann Oncol 2001;12:493-6
  • Crielaard BJ, van der Wal S, Le HT, Liposomes as carriers for colchicine-derived prodrugs: Vascular disrupting nanomedicines with tailorable drug release kinetics. Eur J Pharm Sci. 2012;45(4):429-35
  • Wu FG, Luo JJ, Yu ZW. Infrared spectroscopy reveals the nonsynchronicity phenomenon in the glassy to fluid micellar transition of DSPE-PEG2000 aqueous dispersions. Langmuir 2010;26:12777-84
  • Sochanik A, Mitrus I, Smolarczyk R, Experimental anticancer therapy with vascular-disruptive peptide and liposome-entrapped chemotherapeutic agent. Arch Immunol Ther Exp (Warsz) 2010;58:235-45
  • Moribe K, Maruyama S, Inoue Y, Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. Int J Pharm 2010;387:236-43
  • Gaber NN, Darwis Y, Peh KK, Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol 2006;6:1-7
  • Torchilin VP. Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul 1998;15:11-19
  • Zalipsky S. Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine. FEBS Lett 1994;353:71-4
  • Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 1999;16:23-7
  • Jones MC, Leroux JC. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999;48:101-11
  • Lukyanov AN, Gao Z, Torchilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release 2003;91:97-102
  • Veronese F, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005;10:1451-8
  • Jiang W, Mardyani S, Fischer H, Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots. Chem Mater 2006;4:872-8
  • Mulder WJM, Koole R, Brandwijk RJ, Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot ratlles. Nano Lett 2006;6:1-6
  • Adams M, Lavasanifar A, Kwon G. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92:1343-55
  • Kwon GS, Suwa S, Yokoyama M, Enhanced tumor accumulation and prolonged circulation times of ratlle-forming poly(ethylene oxide-aspartate) block copolymer–adriamycin conjugates. J Control Release 1994;29:17-23
  • Li Y, Kwon GS. Methotrexate esters of poly(ethylene oxide)-block-poly(2-hydroxyethyl-laspartamide). I. Effects of the level of methotrexate conjugation on the stability of ratlles and on drug release. Pharm Res 2000;17:607-11
  • Nishiyama N, Kataoka K. Preparation and characterization of size-controlled polymeric ratlle containing cis-dichlorodiammineplatinum (II) in the core. J Control Release 2001;74:83-94
  • Burt HM, Zhang X, Toleikis P, Development of copolymers of poly(d,llactide) and methoxypolyethylene glycol as ratllar carriers of paclitaxel. Colloids Surf B Biointerfaces 1999;16:161-71
  • Kohler N, Fryxell GE, Zhang MQ. A bifunctional poly(Ethylene Glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 2004;126:7206-11
  • Larsen EK, Nielsen T, Wittenborn T, Size-dependent accumulation of pegylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 2009;3:1947-51
  • Wang A, Gu F, Zhang L, Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 2008;8:1063-70
  • Ryan SM, Mantovani G, Wang X, Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 2008;5:371-83
  • Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007;7:573-84
  • Wang G, Wang JJ, Du SM, Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine 2012;7:271-80
  • Siegelin MD, Reuss DE, Habel A, Quercetin promotes degradation of survivin and thereby enhances death-receptor–mediated apoptosis in glioma cells. Neuro-oncol 2009;3:122-31
  • Xin H, Sha X, Jiang X, The brain targeting mechanism of angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles. Biomaterials 2012;33:1673-81
  • Tian XH, Lin XN, Wei F, Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomed 2011;6:445-52
  • Ishida T, Harada M, Wang XY, Accelerated blood clearance of PEGylated liposomes following preceding liposome administration: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Release 2005;105(3):305-17
  • Koide H, Asai T, Hatanaka K, T cell-independent B cell response is responsible for ABC phenomenon induced by repeated administration of PEGylated liposomes. Int J Pharm 2010;392(1-2):218-23
  • Ishida T, Atobe K, Wang X, Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicinencapsulation and high-dose first injection. J Control Release 2006;115(3):251-8
  • Ishihara T, Takeda M, Sakamoto H, Accelerated blood clearance phenomenon upon repeated injection of PEG modified PLA-nanoparticles. Pharm Res 2009;26(10):2270-9
  • Hofheinz RD, Gnad-Vogt SU, Beyer U, Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005;16:691-707
  • Ghosh A, Mandal AK, Sarkar S, Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci 2009;84:75-80
  • Vicentini FT, Simi TR, Del Ciampo JO, Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur J Pharm Biopharm 2008;69:948-57
  • Kale R, Saraf M, Juvekar A, Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin-cyclodextrin binary system. J Pharm Pharmacol 2006;58:1351-8
  • Zarif L. Drug delivery by lipid cochleates. Methods Enzymol 2005;391:314-29
  • Ahmed F, Discher DE. Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis triggered controlled release vesicles. J Control Release 2004;96(1):37-53
  • Cai S, Vijayan K, Cheng D, Micelles of different morphologies – advantages of worm-like filomicelles of PEO–PCL in paclitaxel delivery. Pharm Res 2007;24(6):2099-109
  • Ahmed F, Pakunlu RI, Srinivas G, Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 2006;3(3):340-50
  • Tokiwa Y, Jarerat A. Biodegradation of poly(L-lactide). Biotechnol Lett 2004;26(10):771-7
  • Kumar N, Ravikumar MN, Domb AJ. Biodegradable block copolymers. Adv Drug Deliv Rev 2001;53(1):23-44
  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28(1):5-24
  • Siepmann J, Gopferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 2001;48(2–3):229-47
  • Klibanov AL, Maruyama K, Torchilin VP, Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990;268(1):235-7
  • Lee JC, Wong DT, Discher DE. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton. Biophys J 1999;77(2):853-64
  • Photos PJ, Bacakova L, Discher B, Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 2003;90(3):323-34
  • Bermudez H, Brannan AK, Hammer DA, Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 2002;35(21):8203-8
  • Dalhaimer P, Bates FS, Discher DE. Single molecule visualization of stable, stiffness-tunable, flow-conforming worm micelles. Macromolecules 2003;36(18):6873-7
  • Geng Y, Dalhaimer P, Cai S, Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nano 2007;2(4):249-55
  • Dams ET, Laverman P, Oyen WJ, Accelerated blood clearance and altered biodistribution of repeated administration of sterically stabilized liposomes. J Pharmacol Exp Ther 2000;292(3):1071-9
  • Ishida T, Ichikawa T, Ichihara M, Effect of the physicochemical properties of initially administrate liposomes on the clearance of subsequently administrate PEGylated liposomes in mice. J Control Release 2004;95(3):403-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.