1,170
Views
129
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in brain tumor-targeted nano-drug delivery systems

&
Pages 671-686 | Published online: 18 May 2012

Bibliography

  • Bouffet E, Tabori U, Huang A, Possibilities of new therapeutic strategies in brain tumors. Cancer Treat Rev 2010;36:335-41
  • Nicholas MK, Lukas RV, Chmura S, Molecular heterogeneity in glioblastoma: therapeutic opportunities and challenges. Semin Oncol 2011;38:243-53
  • Allard E, Passirani C, Benoit J-P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 2009;30:2302-18
  • Behin A, Hoang-Xuan K, Carpentier AF, Primary brain tumours in adults. Lancet 2003;361:323-31
  • Online data: Cancer statistics by the U.S. National Cancer Institute. Available from: http://apps.nccd.cdc.gov/uscs/
  • Nussbaum ES, Djalilian HR, Cho KH, Brain metastases. Histology, multiplicity, surgery, and survival. Cancer 1996;78:1791-88
  • Laws ER, Parney IF, Huang W. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the glioma outcomes project. J Neurosurg 2003;99:467-73
  • Arko L, Katsyv I, Park GE, Experimental approaches for the treatment of malignant gliomas. Pharmacol Amp Ther 2010;128:1-36
  • Yang I, Huh NG, Smith ZA, Distinguishing glioma recurrence from treatment effect after radiochemotherapy and immunotherapy. Neurosurg Clin N Am 2010;21:181-6
  • Soanes L, Hargrave D, Smith L, What are the experiences of the child with a brain tumour and their parents? Eur J Oncol Nurs 2009;13:255-61
  • Louis DN, Ohgaki H, Wiestler OD, The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97-109
  • Beasley KD, Toms SA. The molecular pathobiology of metastasis to the brain: a review. Neurosurg Clin N Am 2011;22:7-14
  • Barnholtz-Sloan JS, Sloan AE, Davis FG, Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan Detroit cancer surveillance system. J Clin Oncol 2004;22:2865-72
  • Isaiah JF. The role of the organ microenvironment in brain metastasis. Semin Cancer Biol 2011;21:107-12
  • Cardoso FL, Brites D, Brito MA. Looking at the blood-and-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 2010;64:328-63
  • Abbott NJ, Patabendige AAK, Dolman DEM, Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37:13-25
  • Pardridge WM. Crossing the blood-brain barrier: are we getting it right? Drug Discovery Today 2001;6:1-2
  • Chen Y, Liu L. Modern methods for delivery of drugs across the blood-Brain barrier. Adv Drug Deliv Rev 2012; In press
  • Ulbrich K, Hekmatara T, Herbert E, Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 2009;71:251-6
  • Schulingkamp RJ, Pagano TC, Hung D, Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Amp Biobehav Rev 2000;24:855-72
  • Halatsch M-E, Schmidt U, Behnke-Mursch J, Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 2006;32:74-89
  • Lucarelli M, Gennarelli M, Cardelli P, Expression of receptors for native and chemically modified low-density lipoproteins in brain microvessels. FEBS Lett 1997;401:53-8
  • Ngarmukos C, Baur EL, Kumagai AK. Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus. Brain Res 2001;900:1-8
  • Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-oncol 2000;2:45-59
  • Ningaraj NS, Rao M, Hashizume K, Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther 2002;301:838-51
  • Schlageter KE, Molnar P, Lapin GD, Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 1999;58:312-28
  • Squire JM, Chew M, Nneji G, Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 2001;136:239-55
  • Kazuo M. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 2011;63:161-9
  • Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 2011;63:170-83
  • Maeda H, Bharate G.Y, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009;71:409-19
  • Vladimir T. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011;63:131-5
  • Hobbs SK, Monsky WL, Yuan F, Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998;95:4607-12
  • Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 2011;23:H217-47
  • Bhojani MS, Dort MV, Rehemtulla A, Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol Pharm 2010;7:1921-9
  • Zhan C, Li B, Hu L, Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew ChemieInt Ed 2011;50:5482-5
  • Zhan C, Yan Z, Xie C, Loop 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery. Mol Pharm 2010;7:1940-7
  • Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996;1996:360-4
  • Morris CJ, Smith MW, Griffiths PC, Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide. J Control Release 2011;151:83-94
  • Zhu L, Wang H, Wang L, High-affinity peptide against MT1-MMP for in vivo tumor imaging. J Control Release 2011;150:248-55
  • Ueberberg S, Schneider S. Phage library-screening: a powerful approach for generation of targeting-agents specific for normal pancreatic islet-cells and islet-cell carcinoma in vivo. Regul Pept 2010;160:1-8
  • Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv 2010;28:849-58
  • Li J, Feng L, Fan L, Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 2011;32:4943-50
  • Lu W, Wan J, She Z, Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release 2007;118:38-53
  • Lu W, Sun Q, Wan J, Cationic albumin–conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 2006;66:11878
  • Agarwal A, Majumder S, Agrawal H, Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug. Curr Nanosci 2011;7:71-80
  • Rempe R, Cramer S, Huwel S, Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood-brain barrier in vitro and their influence on barrier integrity. Biochem Biophys Res Commun 2011;406:64-9
  • Soni S, Babbar AK, Sharma RK, Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J Drug Target 2006;14:87-95
  • Pham W, Zhao B-Q, Lo EH, Crossing the blood-brain barrier: a potential application of myristoylated polyarginine for in vivo neuroimaging. NeuroImage 2005;28:287-92
  • Li J, Gu B, Meng Q, The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology 2011;22:435101
  • McAllister MS, Krizanac-Bengez L, Macchia F, Mechanisms of glucose transport at the blood-brain barrier: an in vitro study. Brain Res 2001;409:20-30
  • Luciani A, Olivier JC, Clement O, Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology 2004;231:135-42
  • Noguchi Y, Saito A, Miyagi Y, Suppression of facilitative glucose transporter 1 mRNA can suppress tumor growth. Cancer Lett 2000;154:175-82
  • Dhanikula RS, Argaw A, Bouchard J-F, Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008;5:105-16
  • Azam B. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta (BBA) Rev Cancer 2011;1816:232-46
  • Banks WA, Robinson SM, Nath A. Permeability of the blood-brain barrier to HIV-1 Tat. Exp Neurol 2005;193:218-27
  • Qin Y, Chen H, Zhang Q, Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 2011;420:304-12
  • Han L, Zhang A, Wang H, Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther 2010;21:417-26
  • Fischer D, Kissel T. Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: implications for drug delivery. Eur J Pharm Biopharm 2001;52:1-11
  • Daniels TR, Delgado T, Rodriguez JA, The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006;121:144-58
  • He H, Li Y, Jia X-R, PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011;32:478-87
  • Cosco D, Paolino D, Cilurzo F, Gemcitabine and tamoxifen-loaded liposomes as multidrug carriers for the treatment of breast cancer diseases. Int J Pharm 2011;422:229-37
  • Du J, Lu W-L, Ying X, Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood-brain barrier and survival of brain tumor-bearing animals. Mol Pharm 2009;6:905-17
  • Tian W, Ying X, Du J, Enhanced efficacy of functionalized epirubicin liposomes in treating brain glioma-bearing rats. Eur J Pharm Sci 2010;41:232-43
  • Demeule M, Regina A, Che C, Identification and design of peptides as a new drug delivery system for the Brain. J Pharmacol Exp Ther 2008;324:1064-72
  • Demeule M, Currie J, Bertrand Y, Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem 2008;106:1534-44
  • Shen J, Zhan C, Xie C, Poly(ethylene glycol)-block-poly(d,l-lactide acid) micelles anchored with angiopep-2 for brain-targeting delivery. J Drug Target 2011;19:197-203
  • Xin H, Jiang X, Gu J, Angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011;32:4293-305
  • Huang XL, Qian S, Cao LH, Expression and activity of membrane surface tissue factor in peripheral blood cells of patients with cerebral infarction. Chin Exp Pharm J 2008;16:1376-8
  • Gao H, Pan S, Yang Z, A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011;32:8669-75
  • Mei D, Gao H, Gong W, Anti glioma effect of doxorubicin loaded liposomes modified with angiopep-2. Afr J Pharm Pharmacol 2011;5:409-14
  • Shen S, Khazaeli MB, Gillespie GY, Alvare VL. Radiation dosimetry of (131)I-chlorotoxin for targeted radiotherapy in glioma-bearing mice. J Neurooncol 2005;71:113-19
  • Veiseh M, Gabikian P, Bahrami SB, Tumor paint: a chlorotoxin:cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 2007;67:6882-8
  • Fu Y-J, Yin L-T, Liang A-H, Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. Neurosci Lett 2007;412:62-7
  • Xiang Y, Liang L, Wang X, Chloride channel-mediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. J Control Release 2011;152:402-10
  • Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng 2006;8:323-41
  • Pang Z, Gao H, Yu Y, Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem 2011;22:1171-80
  • Pang Z, Gao H, Yu Y, Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable polymersomes. Int J Pharm 2011;415:284-92
  • Zhao H, Li GL, Wang RZ, A comparative study of transfection efficiency between liposomes, immunoliposomes and brain-specific immunoliposomes. J Int Med Res 2010;38:957-66
  • Huang R, Ke W, Liu Y, The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials 2008;29:238-46
  • Maletinska L, Blakely EA, Bjornstad KA. Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low density lipoprotein receptor-related protein. Cancer Res 2000;60:2300-3
  • Pang Z, Feng L, Hua R, Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol Pharm 2010;7:1995-2005
  • Temming K, Schiffelers RM, Molema G, RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Update 2005;8:381-402
  • Su W, Wang H, Wang S, PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. Int J Pharm 2012; In press
  • Danhier F, Vroman B, Lecouturier N, Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Release 2009;140:166-73
  • Jiang J, Yang S, Wang J, Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm 2010;76:170-8
  • Zako T, Nagata H, Terada N, Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem Biophys Res Commun 2009;381:54-8
  • Zhan C, Gu B, Xie C, Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release 2010;143:136-42
  • Zhu S, Qian L, Hong M, RGD-Modified PEG-PAMAM-DOX conjugate: in vitro and in vivo targeting to both tumor neovascular endothelial cells and tumor cells. Adv Mater 2011;23:H84-9
  • Zhang L, Zhu S, Qian L, RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for glioma. Eur J Pharm Biopharm 2011;79:232-40
  • Zhan C, Qian J, Feng L, Cyclic RGD-poly(ethylene glycol)-polyethyleneimine is more suitable for glioblastoma targeting gene transfer in vivo. J Drug Target 2011;19:573-81
  • Lu W, Melancon MP, Xiong C, Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 2011;71:6116-21
  • Hovanessian AG, Soundaramourty C, El KD, Surface expressed nucleolin is constantly induced in tumor cells to mediate calciumdependent ligand internalization. PLoS One 2010;5:e15787
  • Christian S, Pilch J, Akerman ME, Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 2003;163:871-8
  • Guo J, Gao X, Su L, Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 2011;32:8010-20
  • Squire JM, Chew M, Nneji G, Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 2001;136:239-55
  • Sarin H, Kanevsky AS, Wu HT, Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 2008;6:80
  • Guo L, Fan L, Pang Z, TRAIL and doxorubicin combination enhances anti-glioblastoma effect based on passive tumor targeting of liposomes. J Control Release 2011;154:93-102
  • Bernardi A, Braganhol E, Jaeger E, Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 2009;281:53-63
  • Bernardi A, Braganhol E, Jaeger E, Indomethacin stimulates activity and expression of ecto-5′-nucleotidase/CD73 in glioma cells and when carried by polymeric nanocapsules reduces in vivo glioma growth. Purinergic Signal 2010;6:71-2
  • Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 2011;29:323-32
  • Cole AJ, David AE, Wang JX, Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials 2011;32:6291-301
  • Friedman HS, Bigner DD. Glioblastoma multiforme and the epidermal growth factor receptor. N Engl J Med 2005;353:1997-9
  • Feng B, Tomizawa K, Michiue H, Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials 2009;30:1746-55
  • Kuo YC, Liang CT. Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 2011;32:3340-50
  • Cheng Y, Meyers JD, Agnes RS, Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small 2011;7:2301-6
  • Peter BD. Brain tumor stem cells: the cancer stem cell hypothesis writ large. Mol Oncol 2010;4:420-30
  • Yao Y, Tang X, Li S, Brain tumor stem cells: view from cell proliferation. Surg Neurol 2009;71:274-9
  • Liu M, Li C, Pazgier M, D-peptide inhibitors of the p53–MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc Natl Acad Sci USA 2010;107:14321-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.