496
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Aptamer-dendrimer bioconjugate: a nanotool for therapeutics, diagnosis, and imaging

, MPharm, , PhD & , PhD
Pages 1273-1288 | Published online: 16 Aug 2012

Bibliography

  • Troy D. The science and practice of pharmacy. 21st edition. Lippincott Williams and Wilkins; USA: 2005
  • Brody E, Gold L. Aptamers as therapeutic and diagnostic agents. Rev Mol Biotechnol 2000;74:5-13
  • Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science 2000;287:820-5
  • Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 2011;18:4206-14
  • Famulok M. Oligonucleotide aptamers that recognize small molecules. Curr Opin Struct Biol 1999;9:324-9
  • 6. Tombelli S, Minunni M, Mascini M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 2007;24:191-200
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990;346:818-22
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249:505-10
  • Wang Y. In vitro selection and characterization of DNA aptamers against a multiple myeloma monoclonal protein methods. PhD Thesis, The Freie University; Berline: 2008
  • Ulrich H, Trujillo CA, Nery A, DNA and RNA aptamers: from tools for basic research towards therapeutic applications. Comb Chem High Throughput Screen 2006;9(8):619-32
  • Fichou Y, Férec C. The potential of oligonucleotides for therapeutic applications. Trends Biotechnol 2006;12:563-70
  • Huang Y, Shangguan D, Liu H, Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. ChemBioChem 2009;10(5):862-8
  • Zhong L, Wang M, Wang J, Ye Z. Application of biosensor surface immobilization methods for aptamer. Chin J Anal Chem 2011;39(3):432-8
  • Lee JH, Yigit MV, Mazumdar D, Lu Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Del Rev 2010;62(6):592-605
  • Tomalia DA, Baker H, Dewald J, New class of polymers: starbust-dendritic macromolecules. Polym J 1985;17(1):117-32
  • Singh SK. Dendrimer a versatile polymer in drug delivery. Asian J Pharm 2009;3:178-87
  • Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 2009;71(3):445-62
  • Cheng Y, Wang J, Rao T, Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 2008;13:1447-71
  • Pushkar S, Philip A, Pathak K, Pathak D. Dendrimers: nanotechnology derived novel polymers in drug delivery. Indian J Pharm Educ Res 2006;40(3):153-8
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 2005;57:2106-29
  • Tomalia DA, Fréchet JMJ. Introduction to the dendritic State. In: Dendrimers and other dendritic polymers. John Wiley & Sons, Ltd; Chichester: 2002
  • Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005;57(15):2215-37
  • Arima H, Motoyama K, Higashi T. Potential use of polyamidoamine dendrimer conjugates with cyclodextrins as novel carriers for siRNA. Pharmaceuticals 2012;5:61-78
  • Kurtoglua YE, Mishra MK, Kannan S, Kannan RM. Drug release characteristics of PAMAM dendrimer-drug conjugates with different linkers. Int J Pharm 2010;384(1-2):189-94
  • Bharali D, Khalil M, Gurbuz M, Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 2009;4:1-7
  • Kaminskas L, Kelly B, McLeod V, Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol Pharm 2009;6(4):1190-204
  • Malik N, Wiwattanapatapee R, Klopsch R, Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 2000;65(1-2):133-48
  • Corrie P. Cytotoxic chemotherapy: clinical aspects. Medicine 2011;39(12):717-22
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010;62(2):90-9
  • Workman P. Paul Workman on the challenges of cancer drug development. Interview by Katharine E. Pestell Drug Discov Today 2003;8(17):775-7
  • Howell P, Radfar S, Wang Y, Khong H. Chemocentric Chemoimmunotherapy: A New Concept in Melanoma Immunotherapy. Treatment of Metastatic Melanoma, Ms Rachael Morton (Ed.), InTech. 2011. Available from: http://www.intechopen.com/books/treatment-of-metastatic-melanoma/chemocentric-chemoimmunotherapy-a-new-concept-in-melanoma-immunotherapy
  • Bagalkot V, Lee I, Yu M, A combined chemoimmunotherapy approach using a plasmid-doxorubicin complex. Mol Pharm 2009;6(3):1019-28
  • Yan A, Levy M. Aptamers and aptamer targeted delivery. RNA Biol 2009;6(3):316-20
  • Kaminskas L, McLeod V, Kelly B, A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomedicine 2012;8(1):103-11
  • Lee I, An S, Yu M, Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J Control Release 2011;155(3):435-41
  • Lee I, Yu M, Kim I, A duplex oligodeoxynucleotide-dendrimer bioconjugate as a novel delivery vehicle for doxorubicin in in vivo cancer therapy. J Control Release 2011;155(1):88-95
  • Ghosh A, Heston W. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 2004;91(3):528-39
  • Wu X, Ding B, Gao J, Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int J Nanomedicine 2011;6:1747-56
  • Min K, Jo H, Song K, Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (-) prostate cancers. Biomaterials 2011;32(8):2124-32
  • Schülke N, Varlamova O, Donovan G, The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc Natl Acad Sci USA 2003;100(22):12590-5
  • Bagalkot V, Farokhzad O, Langer R, Jon S. Aptamer-dox conjugates as novel platform for targeted drug delivery and imaging. Nanomedicine 2007;3:347-55
  • Tong R, Yala L, Fan TM, Cheng J. The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Biomaterials 2010;31(11):3043-53
  • Kim E, Jung Y, Choi H, Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 2010;31(16):4592-9
  • Farokhzad O, Jon S, Khademhosseini A, Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 2004;64:7668-72
  • Chu TC, Twu KY, Ellington AD, Levy M. Aptamer mediated siRNA delivery. Nucleic Acids Res 2006;34(10):e73
  • Huang YF, Shangguan D, Liu H, Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chem Biochem 2009;10(5):862-8
  • Cerchia L, Franciscis V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 2010;28(10):517-25
  • Kanwar JR, Roy K, Kanwar RK. Chimeric aptamers in cancer cell-targeted drug delivery. Biochem Mol Bio 2011;46(6):459-77
  • Tan W, Wang H, Chen Y, Molecular aptamers for drug delivery. Trends Biotechnol 2011;29(12):634-40
  • Cho K, Wang X, Nie S, Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14:1310-16
  • Strehlitz B, Nikolaus N, Stoltenburg R. Protein detection with aptamer biosensors. Sensors 2008;8:4296-307
  • Navani N, Li Y. Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 2006;10(3):272-81
  • Hianik T, Ostatná V, Sonlajtnerova M, Grman I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 2007;70:127-33
  • Zhaoa S, Yang W, Lai RY. A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron 2011;26:2442-7
  • Kita R, Takahashi A, Kaibara M, Kubota K. Formation of fibrin gel in fibrinogen-thrombin system: static and dynamic light scattering study. Biomacromolecules 2002;3:1013
  • O’Sullivan CK. Aptasensors–the future of biosensing? Anal Bioanal Chem 2002;372:44
  • Liua Z, Yuana R, Chai Y, Highly sensitive, reusable electrochemical aptasensor for adenosine. Electrochim Acta 2009;54:6207-11
  • Tanga J, Tanga D, Niessnerb R, Hierarchical dendritic gold microstructure-based aptasensor for ultrasensitive electrochemical detection of thrombin using functionalized mesoporous silica nanospheres as signal tags. Anal Chim Acta 2012;720:1-8
  • Ling Z, Ming-Hua W, Jian-Ping W, Zhun-Zhong Y. Application of biosensor surface immobilization methods for aptamer. Chin J Anal Chem 2011;39(3):432-8
  • Arotiba O, Khati M, Mamba BB. Towards TB Detection: Development of a Neopterin Aptasensor based on Dendrimer-Gold Nanocomposite Platform. In: 61 Annual Meeting of the International Society of Electrochemistry; September 26th – October 1st 2010; Nice, France; 2010. p. 23
  • Liu Y, Tuleouva N, Ramanculov E, Revzin A. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 2010;82(19):8131-6
  • Song KM, Jeong E, Jeon W, Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal Bioanal Chem 2012;402(6):2153-61
  • Song S, Wang L, Li J, Aptamer-based biosensors. Trends Anal Chem 2008;27:108-17
  • Dykman L, Khlebtsov N. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 2011;3(2):34-55
  • Pan Y, Neuss S, Leifert A, Size-dependent cytotoxicity of gold nanoparticles. Small 2007;3(11):1941-9
  • Niidome T, Yamagata M, Okamoto Y, PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006;114(3):343-7
  • Connor EE, Mwamuka J, Gole A, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005;1(3):325-7
  • Tibor H. Properties of nanofabricated biosensors based on DNA aptamers. Presentation presented at Bratislava; Slovakia; 2007
  • Wei F, Liao W, Xu Z, A bio-abiotic interface constructed by nanoscale DNA-dendrimer and conducting polymer for ultra-sensitive bio-molecular diagnosis. Small 2009;5(15):1784-90
  • Liu ZM, Yang Y, Wang H, A hydrogen peroxide biosensor based on nano-Au/PAMAM dendrimer/cystamine modified gold electrode. Sens Actuators B Chem 2005;106:394
  • Shen L, Hu NF. Electrostatic adsorption of heme proteins alternated with polyamidoamine dendrimers for layer-by-layer assembly of electroactive films. Biomacromolecules 2005;6:1475
  • Li A, Yang F, Ma Y, Yang X. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens Bioelectron 2007;22(8):1716-22
  • Yoon HC, Hong MY, Kim HS. Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode. Anal Biochem 2000;282:121
  • Joachimi A, Mayer G, Hartig JS. A new anticoagulant−antidote pair:  control of thrombin activity by aptamers and porphyrins. J Am Chem Soc 2007;129:3036
  • Páramo JA, Rifón J, Fernández J, Thrombin activation and increased fibrinolysis in patients with chronic liver disease. Blood Coagul Fibrinolysis 1991;2:227
  • Peng Y, Zhang D, Li Y, Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Biosens Bioelectron 2008;23:1624
  • Cao ZH, Tan WH. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments. Chem Eur J 2005;11:4502
  • Radi AE, Sánchez JLA, Baldrich E, Reusable impedimetric aptasensor. Anal Chem 2005;77(19):6320-3
  • Shinde S, Fernandes C, Patravale V. Recent trends in in-vitro nanodiagnostics for detection of pathogens. J Control Release 2012;159(2):164-80
  • Gao X, Yang L, Petros JA, In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005;16:63-72
  • Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomed Nanotechnol Bio Med 2011;7(4):385-402
  • Aldana J, Wang YA, Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 2001;123:8844-50
  • Guo W, Li J, Wang Y, Peng X. Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem Mater 2003;15:3125-33
  • Wang Y, Herron N. Nanometer-sized semiconductor clusters— materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 1991;95:525-32
  • Smith A, Niet S. Next-generation quantum dots. Nat Biotechnol 2009;27(8):732-3
  • Benjamin SD. Nanoscale optoentropic transduction mechanisms. PhD Thesis. University of California, San Deigo. 2007. Available from: http://escholarship.org/uc/item/53w074gp [Accessed 28 June 2012]
  • Susumu K, Uyeda H, Medintz I, Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 2007;129(45):13987-96
  • Pons T, Pic E, Lequeux N, Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 2010;4(5):2531-8
  • Wang Y, Tang Z, Correa-Duarte MA, Mechanism of strong luminescence photoactivation of citrate-stabilized water-solublenanoparticles with CdSe cores. J Phys Chem B 2004;108(40):15461-9
  • Michalet X, Pinaud F, Bentolila L, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538-44
  • Yu W, Chang E, Drezek R, Colvin VL. Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 2006;348(3):781-6
  • Ho Y, Leong K. Quantum dot-based theranostics. Nanoscale 2010;2:60-8
  • Bailey R, Smith A, Nie S. Quantum dots in biology and medicine. Cheminform 2005;36:22
  • Lemon BI, Crooks RM. Preparation and characterization of dendrimerencapsulated CdS semiconductor quantum dots. J Am Chem Soc 2000;122:12886-7
  • Liu JA, Li HB, Wang W, Use of ester-terminated polyamidoamine dendrimers for stabilizing quantum dots in aqueous solutions. Small 2006;2:999-1002
  • Algarra M, Campos BB, Alonso B, Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing. Talanta 2012;88:403-7
  • Higuchi Y, Wu C, Chang KL, Polyamidoamine dendrimer-conjugated quantum dots for efficient labeling of primary cultured mesenchymal stem cells. Biomaterials 2011;32(28):6676-82
  • Huanga B, Tomalia D. Dendronization of gold and CdSe/cdS (core–shell) quantum dots with tomalia type, thiol core, functionalized poly(amidoamine) (PAMAM) dendrons. J Lumin 2005;111:215-23
  • Xing Y, Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark 2008;4:307-19
  • Akerman ME, Chan WC, Laakkonen P, Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002;99:12617-21
  • Winter JO, Liu TY, Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv Mater 2001;13:1673-7
  • Lakowicz JR, Gryczynski I, Gryczynski Z, Time-resolved spectral observations of cadmium-enriched cadmiumsulfide nanoparticles and the effects of DNA oligomer binding. Anal Biochem 2000;280:128-36
  • Hanaki K, Momo A, Oku T, Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 2003;302(3):496-501
  • Liu J, Wei X, Cao J, Jiang H. CdTe quantum dots modified by polyamidoamine dendrimers for cell imaging. E J Chem 2012;9(1):171-4
  • Das A, Sanjayan GJ, Kecskés M, Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists. J Nanobiotech 2010;8:11
  • Li Z, Huang P, He R, Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mater Lett 2010;64(3):375-8
  • Wei F, Ho C. Aptamer-based electrochemical biosensor for botulinum neurotoxin. Anal Bioanal Chem 2009;393:1943-8
  • Xue X, Wang J, Sun M, Detection of live/dead Staphylococcus aureus cells based on CdSe quantum dots and propidium iodide fluorescent labeling. Afr J Microbiol Res 2012;6(12):3052-7
  • Zhang L, Radovic-Moreno AF, Alexis F, Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2007;2(9):1268-71
  • Damjana D, Veronika K. Chapter 5 lipid membranes as tools in nanotoxicity studies. In: Liu AL, Iglič A, editors. Advances in planar lipid bilayers and liposomes. Volume 10 Academic Press; USA: 2009. p. 121-34
  • Clancy A, Gregorious Y, Yaehne K, Measuring properties of nanoparticles in embryonic blood vessels: towards a physicochemical basis for nanotoxicity. Chem Phys Lett 2010;488(4–6):99-111
  • Andre N, Tian X, Lutz M, Li N. Toxic potential of materials at the nanolevel. Science 2006;311(5761):622-7
  • Fadeel B, Garcia-Bennett AE. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 2010;62(3):362-74
  • Simko M, Gazso A, Fiedeler U, Nentwich M. Nanoparticles, oxidative stress and free radicals. Nanotrust Dossiers 2011;12:1-3
  • Somasundaran P, Fang X, Ponnurangam S, Li B. Mixing nanoparticles with benign biocompatible particles. KONA Powder Particle J 2010;28:38-49
  • Tang H, Guo J, Sun Y, Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Int J Pharm 2011;421(2):388-96
  • Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon 2010;48(8):2127-50
  • Luo Z, Yuwen L, Han Y, Reduced graphene oxide/PAMAM-silver nanoparticles nanocomposite modified electrode for direct electrochemistry of glucose oxidase and glucose sensing. Biosens Bioelectron 2012;36(1):179-85
  • Wang Y, Li Z, Hu D, Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 2010;132(27):9274-6
  • Pinto L. In: Aptamersas bio-input to therapeutics and diagnostics. In: Eulasur workshop: from material to product; 7 – 9 April 2011; Belo Horizonte, Brazil
  • BCC Research. Nucleic Acid Aptamers for Diagnostics and Therapeutics: Global Markets. Available from: http://www.bccresearch.com/report/BIO071A.html [Accssed 05 April 2012]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.