757
Views
96
CrossRef citations to date
0
Altmetric
Reviews

Gold nanoparticles in theranostic oncology: current state-of-the-art

, , , &
Pages 1225-1243 | Published online: 16 Aug 2012

Bibliography

  • Ahmad MZ, Akhter S, Jain GK, Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv 2010;7(8):927-42
  • Akhter S, Ahmad Z, Singh A, Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des 2011;17(18):1834-50
  • Brannon PL, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59
  • Kim CK, Lim SJ. Recent progress in drug delivery systems for anticancer agents. Arch Pharm Res 2002;25:229-39
  • Beaux MF II, McIlroy DN, Gustin KE. Utilization of solid nonomaterials for drug delivery. Expert Opin Drug Deliv 2008;5(7):725-35
  • Torchilin VP. Passive and active drug targeting: drug delivery to tumours as an example. In: Korting MS, editor. Hand book of experimental pharmacology: drug delivery. Springer Heidelberg Dordrecht; New York: 2010. p. 3-54
  • Hartman KB, Wilson LJ, Rosenblum MG. Detecting and treating cancer with nanotechnology. Mol Diagn Ther 2008;12(1):1-14
  • Van Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 2006;3(2):205-16
  • Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 2007;7(6):833-7
  • Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med 2008;59:251-65
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7(9):771-82
  • Nune SK, Gunda P, Thallapally PK, Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 2009;6(11):1175-94
  • Arias JL. Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin Drug Deliv 2011;8(12):1589-608
  • Miele E, Spinelli GP, Tomao F, Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed 2009;4:99-105
  • Paciotti GF, Myer L, Weinreich D. Colloidal gold: a novel nanoparticle vector for tumour directed drug delivery. Drug Deliv 2004;11(3):169-83
  • Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumour-targeted drug delivery vectors. Drug Dev Res 2006;67:47-54
  • Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 2010;7(6):753-63
  • Fricker SP. Medical uses of gold compounds: past, present and future. Gold Bull 1996;29:53-60
  • Tiekink ERT. Gold compounds in medicine: potential anti-tumour agents. Gold Bull 2003;36:117-24
  • Mahdihassan S. Cinnabar-gold as the best alchemical drug of longevity, called makaradhwaja in India. Am J Chin Med 1985;13(1-4):93-108
  • El-Sayed IH, Huang X, El-Sayed M. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006;239(1):129-35
  • Mukherjee P, Bhattacharya R, Mukhopadhyay D. Gold nanoparticles bearing functional anti-cancer drug and anti-angiogenic agent: a “2 in 1” system with potential application in cancer therapeutics. J Biomed Nanotech 2005;1(2):224-8
  • Mukherjee P, Bhattacharya R, Wang P, Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 2005;11(9):3530-4
  • Curley SA, Cherukuri P, Briggs K, Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in humancancer cells using cetuximab-targeted gold nanoparticles. J Exp Ther Oncol 2008;7(4):313-26
  • Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 2010;62(3):346-61
  • Hirsch LR, Stafford RJ, Bankson JA, Nanoshell-mediated near-infrared thermal therapy of tumours under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100(23):13549-54
  • O'Neal DP, Hirsch LR, Halas NJ, Photothermal tumour ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004;209(2):171-6
  • Loo C, Lin A, Hirsch L, Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004;3(1):33-40
  • Yann P, Alf L. Nanoscale canger therapeutics. In: Alf L, editor. Nanotherapeutics drug delivery concepts in nannoscience. Pan Stanford Publishing; Singapore: 2009. p. 93-124
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54(5):631-51
  • Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulator in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265-83
  • Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004;61(19-20):2549-59
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantumsize-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104(1):293-46
  • Azzaroni O, Brown AA, Cheng N, Huck, Synthesis of gold nanoparticles inside polyelectrolyte brushes. J Mater Chem 2007;17(32):3433-9
  • Zhou JF, Beattie DA, Sedev R, Ralston J. Synthesis and surface structure of thymine-functionalized, self-assembled monolayer-protected gold nanoparticles. Langmuir 2007;23(18):9170-7
  • Esparza R, Rosas G, Fuentes ML, Synthesis of gold nanoparticles with different atomistic structural characteristics. Mater Charact 2007;58(8-9):694-700
  • Mukherjee P, Patra CR, Ghosh A, Characterization and catalytic activity of gold nanoparticles synthesized by autoreduction of aqueous chloroaurate ions with fumed silica. Chem Mater 2002;14(4):1678-84
  • Mandal TK, Fleming MS, Walt DR. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett 2002;2(1):3-7
  • Shankar SS, Rai A, Ankamwar B, Biological synthesis of triangular gold nanoprisms. Nat Mater 2004;3(7):482-8
  • Mukherjee P, Senapati S, Mandal D. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 2002;3(5):461-3
  • Ahmad A, Mukherjee P, Senapati S, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 2003;28(4):313-18
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008;23(3):217-28
  • Ghosh P, Han G, De M, Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008;60(11):1307-15
  • Baban DF, Seymour LW. Control of tumour vascular permeability. Adv Drug Deliv Rev 1998;34(1):109-19
  • Phillips MA, Gran ML, Peppas NA. Targeted nanodelivery of drugs and diagnostics. Nano Today 2010;5(2):143-59
  • Kim CK, Ghosh P, Rotello VM. Multimodal drug delivery using gold nanoparticles. Nanoscale 2009;1(1):61-7
  • Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 2009;6(3):285-304
  • Hostetler MJ, Wingate JE, Zhong CJ, Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 1998;14(1):17-30
  • Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumours with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 2010;107(3):1235-40
  • Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 2012;64(2):200-16
  • Franze S. A comparison of peptide and folate receptor targeting of cancer cells: from single agent to nanoparticle. Expert Opin Drug Deliv 2011;8(3):281-98
  • Dixit V, Van den Bossche J, Sherman DM, Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumour cells. Bioconjug Chem 2006;17(3):603-9
  • Chen YH, Tsai CY, Huang PY, Methotrexate conjugated to gold nanoparticles inhibits tumour growth in a syngeneic lung tumour model. Mol Pharm 2007;4(5):713-22
  • Prabaharan M, Grailer JJ, Pilla S, Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumour-targeted drug delivery. Biomaterials 2009;30(30):6065-75
  • Patra CR, Bhattacharya R, Mukherjee P. Fabrication and functional characterization of gold nanoconjugates for potential application in ovarian cancer. J Mater Chem 2010;20(3):547-54
  • Lee ES, Oh KT, Kim D, Tumour pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J Control Release 2007;123(1):19-26
  • Wang F, Wang YC, Dou S, Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011;5(5):3679-92
  • Chauhan A, Zubair S, Tufail S, Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 2011;6:2305-19
  • Unak G, Ozkaya F, Ilker Medine E, Gold nanoparticle probes: design and in vitro applications in cancer cell culture. Colloids Surf B Biointerfaces 2012;90:217-26
  • Peng C, Zheng L, Chen Q, PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumour imaging by computed tomography. Biomaterials 2012;33(4):1107-19
  • Heo DN, Yang DH, Moon HJ, Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 2012;33(3):856-66
  • Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 2007;129(37):11653-61
  • Hwu JR, Lin YS, Josephrajan T. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 2009;131(1):66-8
  • Dhar S, Daniel WL, Giljohann DA, Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum (IV)warheads. J Am Chem Soc 2009;131(41):14652-3
  • Kim B, Han G, Toley BJ, Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 2010;5(6):465-72
  • Libutti SK, Paciotti GF, Byrnes AA, Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010;16(24):6139-49
  • Kawano T, Niidome Y, Mori T, PNIPAM gel-coated gold nanorods, for targeted delivery responding to a near-infrared laser. Bioconjug Chem 2009;20(2):209-12
  • Hauck TS, Jennings TL, Yatsenko T, Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 2008;20(20):3832-8
  • Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater 2004;16(19):1685-06
  • Hutter E, Maysinger D. Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 2011;74(7):592-04
  • Huang X, Qian W, El-Sayed IH, El-Sayed MA. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Laser Surg Med 2007;39(9):747-53
  • El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 2005;5(5):829-34
  • Li Y, Zhong Z, Chai Y, Simultaneous electrochemical immunoassay of three liver cancer biomarkers using distinguishable redox probes as signal tags and gold nanoparticles coated carbon nanotubes as signal enhancers. Chem Commun (Camb) 2011;48:537-9
  • Geng F, Song K, Xing JZ, Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 2011;22(28):285101
  • Kruse DE, Stephens DN, Lindfors HA, A radio-frequency coupling network for heating of citrate-coated gold nanoparticles for cancer therapy: design and analysis. IEEE Trans Biomed Eng 2011;58(7):2002-12
  • Lukianova-Hleb EY, Oginsky AO, Samaniego AP, Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics 2011;1:3-17
  • Van de Broek B, Devoogdt N, D'Hollander A, Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011;5(6):4319-28
  • Kannan R, Zambre A, Chanda N, Functionalized radioactive gold nanoparticles in tumour therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011;4(1):42-51
  • Chanda N, Kan P, Watkinson LD, Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumour-bearing mice. Nanomedicine 2010;6(2):201-9
  • Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 2007;7(6):1591-7
  • Skrabalak SE, Chen J, Sun Y. Gold nanocages: synthesis, properties, and applications. Acc Chem Res 2008;41(12):1587-95
  • Ji X, Shao R, Elliott AM, Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C Nanomater Interfaces 2007;111(17):6245-51
  • Murphy CJ, Sau TK, Gole AM, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 2005;109:13857-70
  • Chen J, Saeki F, Wiley BJ, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005;5(3):473-7
  • Hu M, Chen J, Li ZY, Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006;35(11):1084-94
  • Loo C, Lowery A, Halas N, Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5(4):709-11
  • Chen J, Wang D, Xi J, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007;7(5):1318-22
  • Lukianova-Hleb EY, Ren X, Constantinou PE, Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems. PLoS ONE 2012;7(4):e34537
  • Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 2001;13(18):1389-93
  • Jana NR, Gearheart L, Obare SO, Murphy CJ. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 2002;18(3):922-7
  • Chen J, McLellan JM, Siekkinen A, Facile synthesis of gold-silver nanocages with controllable pores on the surface. J Am Chem Soc 2006;128(46):14776-1477
  • Skrabalak SE, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2007;2(9):2182-90
  • Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003;15(10):1957-62
  • Burdick J, Alonas E, Huang HC, High-throughput template multisegment synthesis of gold nanowires and nanorods. Nanotechnology 2009;20(6):065306
  • Chang SS, Shih CW, Chen CD, The shape transition of gold nanorods. Langmuir 1999;15(3):701-9
  • Angelatos AS, Radt B, Caruso F. Light-responsive polyelectrolyte/gold nanoparticle microcapsules. J Phys Chem B 2005;109(7):3071-6
  • Skirtach AG, Munoz Javier A, Kreft O, Laser-induced release of encapsulated materials inside living cells. Angew Chem Int Ed Engl 2006;45(28):4612-17
  • Song KH, Kim C, Cobley CM, Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 2009;9(1):183-8
  • Cobley CM, Au L, Chen J, Xia Y. Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin Drug Deliv 2010;7(5):577-87
  • Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983;220(4596):524-7
  • Chen J, Glaus C, Laforest R, Gold nanocages as photothermal transducers for cancer treatment. Small 2010;6(7):811-17
  • Yang X, Skrabalak SE, Li ZY, Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Lett 2007;7(12):3798-802
  • Morton JG, Day ES, Halas NJ, West JL. Nanoshells for photothermal cancer therapy. In: Grobmyer SR, Moudgil BM, editors. Cancer nanotechnology: methods and protocols. Humana Press; London: 2010. p. 101-18
  • Madsen SJ, Baek SK, Makkouk AR, Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng 2012;40(2):507-15
  • Baek SK, Makkouk AR, Krasieva T, Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 2011;104(2):439-48
  • Liu SY, Liang ZS, Gao F, In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. Mater Sci Mater Med 2010;21(2):665-74
  • Li ML, Wang JC, Schwartz JA, In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumour vasculature. J Biomed Opt 2009;14(1):010507
  • Bickford LR, Joseph Chang J, Fu K, Evaluation of immunotargeted gold nanoshells as rapid diagnostic imaging agents for HER2-overexpressing breast cancer cells: a time-based analysis. Nanobiotechnology 2008;4(1-4):1-8
  • Fales AM, Yuan H, Vo-Dinh T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 2011;27(19):12186-90
  • Park J, Estrada A, Schwartz JA, Intra-organ biodistribution of gold nanoparticles using intrinsic two-photon induced photoluminescence. Lasers Surg Med 2010;42(7):630-9
  • Melancon MP, Elliott A, Ji X, Theranostics with multifunctional magnetic gold nanoshells: photothermal therapy and t2* magnetic resonance imaging. Invest Radiol 2011;46(2):132-40
  • Wu C, Yu C, Chu M. A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int J Nanomedicine 2011;6:807-13
  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006;110(14):7238-48
  • Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128(6):2115-20
  • Huff TB, Tong L, Zhao Y, Hyperthermic effects of gold nanorods on tumour cells. Nanomedicine (Lond) 2007;2(1):125-32
  • Tong L, Zhao Y, Huff T, Gold nanorods mediate tumour cell death by compromising membrane integrity. Adv Mater 2007;19:3136-41
  • Takahashi H, Niidome T, Nariai A, Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 2006;35:500-1
  • Dickerson EB, Dreaden EC, Huang X, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008;269(1):57-66
  • Arnida A, Janát-Amsbury MM, Ray A, Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 2011;77(3):417-23
  • Gormley AJ, Malugin A, Ray A, Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment. J Drug Target 2011;19(10):915-24
  • Choi WI, Kim JY, Kang C, Tumour regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 2011;5(3):1995-2003
  • Kirui DK, Krishnan S, Strickland AD, PAA-derived gold nanorods for cellular targeting and photothermal therapy. Macromol Biosci 2011;11(6):779-88
  • Jang B, Park JY, Tung CH, Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011;225(2):1086-94
  • Li JL, Gu M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials 2010;31(36):9492-8
  • Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicological considerations of clinically applicable nanoparticles. Nanotoday 2011;6:585-607
  • Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 2009;4(8):858-64
  • Rothen-Rutishauser BM, Schürch S, Haenni B, Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 2006;40(14):4353-9
  • Wang SG, Lu WT, Tovmachenko O, Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 2008;463:145-9
  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004;15:897-900
  • Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 2001;90:1927-36
  • Browning LM, Kerry J, Lee KJ, Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale 2009;1:138-52
  • Perreault F, Melegari SP, Fuzinatto CF, Toxicity of pamam-coated gold nanoparticles in different unicellular models. Environ Toxicol 2012; doi: 10.1002/tox.21761
  • Pan Y, Bartneck M, Jahnen-Dechent W. Cytotoxicity of gold nanoparticles. Methods Enzymol 2012;509:225-42
  • Goel R, Shah N, Visaria R, Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. Nanomedicine (Lond) 2009;4(4):401-10
  • Paciotti GF, Myer L, Weinreich D, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004;11(3):169-83
  • Huang X, Peng X, Wang Y, A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010;4(10):5887-96
  • Everts M, Saini V, Leddon JL, Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 2006;6(4):587-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.