584
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in polymeric microspheres for parenteral drug delivery—part 2

, , &
Pages 1209-1223 | Published online: 28 Aug 2012

Bibliography

  • Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004;282(1-2):1-18
  • Berkland C, Pollauf E, Raman C, Macromolecule release from monodisperse PLG microspheres: control of release rates and investigation of release mechanism. J Pharm Sci 2007;96(5):1176-91
  • Choy YB, Choi H, Kim KK. Uniform biodegradable hydrogel microspheres fabricated by a surfactant-free electric-field-assisted method. Macromol Biosci 2007;7(4):423-8
  • Kim K, Pack D. Microspheres for drug delivery. In: Ferrari M, editor-in-chief. Biomems and biomedical nanotechnology Volume I: Biological and Biomedical Nanotechnology; Lee AP, Lee LJ, editors, Springer, 233 Spring Street, New York, NY 10013, USA; 2006:19-50
  • Berkland C, Kim K, Pack DW. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Release 2001;73(1):59-74
  • Pollauf EJ, Berkland C, Kim KK, In vitro degradation of polyanhydride/polyester core-shell double-wall microspheres. Int J Pharm 2005;301(1-2):294-303
  • Berkland C, Pollauf E, Varde N, Monodisperse liquid-filled biodegradable microcapsules. Pharm Res 2007;24(5):1007-13
  • Pollauf EJ, Pack DW. Use of thermodynamic parameters for design of double-walled microsphere fabrication methods. Biomaterials 2006;27(14):2898-906
  • Cooley P, Wallace D, Antohe B. Application of ink-jet printing technology to BioMEMS and microfluidic systems. JALA 2002;7(5):33-9
  • Radulescu D, Schwade N, Wawro D. Uniform paclitaxel-loaded biodegradable microspheres manufactured by ink-jet technology. Proceedings of the Winter Symposium and 11th International Symposium on Recent Advances in Drug Delivery Systems; Salt Lake City, UT, USA; 2003
  • Multilayer microspheres. MicroFab Technologies, Inc. Plano, Texas. Available from: http://www.microfab.com/index.php?option=com_content&view=article&id=71&Itemid=134 [Last accessed 16 July 2012]
  • Veldhuis G, Girones M, Bingham D. Monodisperse microspheres for parenteral drug delivery. Drug Deliv Technol 2009;9(1):24-31
  • Duque LF, Lathuile A, Limousin MFP, Biodegradable monodisperse microspheres with sustained release of goserelin acetate for the treatment of prostate and breast cancer. Poster# 136. The 39th Annual Meeting & Exposition of the Controlled Release Society; Quebec City, Canada; 2012
  • Hiemstra C, Lathuile A, Zuidema J, IGF-1 loaded monospheres for treating ischemic heart disease. Poster# 166. The 39th Annual Meeting & Exposition of the Controlled Release Society; Quebec City, Canada; 2012
  • Kang L, Chung BG, Langer R, Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 2008;13(1-2):1-13
  • Xu Q, Hashimoto M, Dang TT, Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 2009;5(13):1575-81
  • Palmer D, Pattison S, Cheung I, Master the microsphere. PFQ;December/January 2012
  • Palmer D, Zhao X, Seaman P. Encapsulation of biotherapies: new technology for synthesis of monodisperse microspheres. PFQ; August/September 2010
  • Bae SE, Son JS, Park K, Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release 2009;133(1):37-43
  • Mok H, Park TG. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent. Eur J Pharm Biopharm 2008;70(1):137-44
  • Monodisperse spray drying technology. Nanomi B.V., the Netherlands. Available from: http://www.nanomi.com/monodisperse-spray-drying-nozzle.html [Last accessed 16 July, 2012]
  • Van der Gucht F, De Ridder I; Particle engineering with a lab scale spray-dryer. ProCepT nv, Belgium. Available from: http://www.pro-c-ept.com/files/Articles/Poster%20AAPS%202007%20Particle%20Engineering%20with%20Spray%20Drying.pdf [last accessed 16 July, 2012]
  • Semeels G, Van der Gucht F, Van den Mooter G; Optimization of process conditions for spray drying drug-loaded poly lactic-co-glycolic acid (PLGA) microspheres. ProCepT nv, Belgium. Available from: http://www.pro-c-ept.com/files/Articles/Poster%20AAPS%202009%20Spray%20Drying%20PLGA.pdf [Last accessed 16 July, 2012]
  • Wan F, Maltesen MJ, Bjerregaard S, Design and characterization of biodegradable polymer-coated protein micropartices by spray drying method with a three-fluid nozzle. Poster# 154. The 39th Annual Meeting & Exposition of the Controlled Release Society; Quebec City, Canada; 2012
  • Bock N, Woodruff MA, Hutmacher DW, Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 2011;3(1):131-49
  • Almeria B, Deng W, Fahmy TM, Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci 2010;343(1):125-33
  • Xie J, Ng WJ, Lee LY, Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. J Colloid Interface Sci 2008;317(2):469-76
  • Davies OR, Lewis AL, Whitaker MJ, Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliv Rev 2008;60(3):373-87
  • Baxendale AJ, van Hooff P, Durrant LG, Single shot tetanus vaccine manufactured by a supercritical fluid encapsulation technology. Int J Pharm 2011;413(1-2):147-54
  • Whitaker MJ, Hao J, Davies OR, The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. J Control Release 2005;101(1-3):85-92
  • Jordan F, Naylor A, Kelly CA, Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies. J Control Release 2010;141(2):153-60
  • Bahrami M, Ranjbarian S. Production of micro- and nano-composite particles by supercritical carbon dioxide. J Supercrit Fluids 2007;40(2):263-83
  • Reverchon E, Adami R, Caputo G, Spherical microparticles production by supercritical antisolvent precipitation: interpretation of results. J Supercrit Fluids 2008;47(1):70-84
  • Mishima K. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deliv Rev 2008;60(3):411-32
  • Lee LY, Smith KA, Wang C-H. Fabrication of controlled release devices using supercritical antisolvent method. Available from: http://hdl.handle.net/1721.1/7479 [Last accesssed 16 July 2012]
  • Lee LY, Smith KA, Wang C-H. Fabrication of micro and nanoparticles of paclitaxel-loaded poly L lactide for controlled release using supercritical antisolvent method: effects of thermodynamics and hydrodynamics. Available from: http://hdl.handle.net/1721.1/30387 [Last accessed 16 July 2012]
  • Guan J, Ferrell N, James Lee L, Fabrication of polymeric microparticles for drug delivery by soft lithography. Biomaterials 2006;27(21):4034-41
  • Guan J, Chakrapani A, Hansford DJ. Polymer microparticles fabricated by soft lithography. Chem Mater 2005;17(25):6227-9
  • Kelly JY, DeSimone JM. Shape-Specific, Monodisperse Nano-Molding of Protein Particles. JACS 2008;130(16):5438-9
  • Rolland JP, Maynor BW, Euliss LE, Direct Fabrication and Harvesting of Monodisperse, Shape-Specific Nanobiomaterials. JACS 2005;127(28):10096-100
  • Canelas DA, Herlihy KP, DeSimone JM. Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1(4):391-404
  • Acharya G, Shin CS, McDermott M, The hydrogel template method for fabrication of homogeneous nano/microparticles. J Control Release 2010;141(3):314-19
  • Lin Y, Huang Y. Laser-assisted fabrication of highly viscous alginate microsphere. J Appl Phys 2011;109(8):083107-8
  • Zhang H, Tong S-Y, Zhang X-Z, Novel solvent-free methods for fabrication of nano- and microsphere drug delivery systems from functional biodegradable polymers. J Phys Chem C 2007;111(34):12681-5
  • Crespy D, Landfester K. Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 2010;6:1132-48
  • Zhao T, Qiu D. One-pot synthesis of highly folded microparticles by suspension polymerization. Langmuir 2011;27(21):12771-4
  • Nguyen D, Duguet E, Bourgeat-Lami E, An easy way to control the morphology of colloidal polymer-oxide supraparticles through seeded dispersion polymerization. Langmuir 2010;26(9):6086-90
  • King WJ, Toepke MW, Murphy WL. A general route for the synthesis of functional, protein-based hydrogel microspheres using tailored protein charge. Chem Commun (Camb) 2011;47(1):526-8
  • Marui A, Tabata Y, Kojima S, A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study. Circ J 2007;71(8):1181-6
  • Hashimoto T, Koyama H, Miyata T, Selective and sustained delivery of basic fibroblast growth factor (bFGF) for treatment of peripheral arterial disease: results of a phase I trial. Eur J Vasc Endovasc Surg 2009;38(1):71-5
  • De Leede LG, Humphries JE, Bechet AC, Novel controlled-release Lemna-derived IFN-alpha2b (Locteron): pharmacokinetics, pharmacodynamics, and tolerability in a phase I clinical trial. J Interferon Cytokine Res 2008;28(2):113-22
  • Krastev Z, Kotzev I, Tchernev K, Randomized, open-Label 12-Week comparison of controlled-release interffron alpha2b+ribavrin vs. pegylated-interferon alpha2b+ribavrin in treatment-naive genotype1 hepatitis C: 4 week results from 480study (panel a). J Hepatol 2010;52:S27-S
  • van Dijkhuizen-Radersma R, Metairie S, Roosma JR, Controlled release of proteins from degradable poly(ether-ester) multiblock copolymers. J Control Release 2005;101(1-3):175-86
  • van Dijkhuizen-Radersma R, Wright SJ, Taylor LM, In vitro/in vivo correlation for 14C-methylated lysozyme release from poly(ether-ester) microspheres. Pharm Res 2004;21(3):484-91
  • Park EJ, Na DH, Lee KC. In vitro release study of mono-PEGylated growth hormone-releasing peptide-6 from PLGA microspheres. Int J Pharm 2007;343(1-2):281-3
  • Lee ES, Park KH, Park IS, Glycol chitosan as a stabilizer for protein encapsulated into poly(lactide-co-glycolide) microparticle. Int J Pharm 2007;338(1-2):310-16
  • Lee ES, Kwon MJ, Lee H, In vitro study of lysozyme in poly(lactide-co-glycolide) microspheres with sucrose acetate isobutyrate. Eur J Pharm Sci 2006;29(5):435-41
  • Yeh MK, Chen JL, Chiang CH, The preparation of sustained release erythropoietin microparticle. J Microencapsul 2007;24(1):82-93
  • Ho ML, Fu YC, Wang GJ, Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite. J Control Release 2008;128(2):142-8
  • Chan OC, So KF, Chan BP. Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical crosslinking on release kinetics. J Control Release 2008;129(2):135-43
  • Solorio L, Zwolinski C, Lund AW, Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J Tissue Eng Regen Med 2010;4(7):514-23
  • Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release 2009;134(1):26-34
  • Wang X, Wenk E, Hu X, Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 2007;28(28):4161-9
  • Yu CY, Yin BC, Zhang W, Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids Surf B Biointerfaces 2009;68(2):245-9
  • Yuan W, Wu F, Guo M, Development of protein delivery microsphere system by a novel S/O/O/W multi-emulsion. Eur J Pharm Sci 2009;36(2-3):212-18
  • Lee JI, Yoo HS. Biodegradable microspheres containing poly(epsilon-caprolactone)-Pluronic block copolymers for temperature-responsive release of proteins. Colloids Surf B Biointerfaces 2008;61(1):81-7
  • King WJ, Pytel NJ, Ng K, Triggered drug release from dynamic microspheres via a protein conformational change. Macromol Biosci 2010;10(6):580-4
  • Yin R, Han J, Zhang J, Glucose-responsive composite microparticles based on chitosan, concanavalin A and dextran for insulin delivery. Colloids Surf B Biointerfaces 2010;76(2):483-8
  • Choleris E, Little SR, Mong JA, Microparticle-based delivery of oxytocin receptor antisense DNA in the medial amygdala blocks social recognition in female mice. Proc Natl Acad Sci USA 2007;104(11):4670-5
  • Soderquist RG, Sloane EM, Loram LC, Release of plasmid DNA-encoding IL-10 from PLGA microparticles facilitates long-term reversal of neuropathic pain following a single intrathecal administration. Pharm Res 2010;27(5):841-54
  • De Stefano D, De Rosa G, Maiuri MC, Oligonucleotide decoy to NF-kappaB slowly released from PLGA microspheres reduces chronic inflammation in rat. Pharmacol Res 2009;60(1):33-40
  • Dass CR, Contreras KG, Dunstan DE, Chitosan microparticles encapsulating PEDF plasmid demonstrate efficacy in an orthotopic metastatic model of osteosarcoma. Biomaterials 2007;28(19):3026-33
  • Davies OR, Head L, Armitage D, Surface modification of microspheres with steric stabilizing and cationic polymers for gene delivery. Langmuir 2008;24(14):7138-46
  • Zhang XQ, Intra J, Salem AK. Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods. J Microencapsul 2008;25(1):1-12
  • Kakade S, Manickam DS, Handa H, Transfection activity of layer-by-layer plasmid DNA/poly(ethylenimine) films deposited on PLGA microparticles. Int J Pharm 2009;365(1-2):44-52
  • Intra J, Salem AK. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery. J Pharm Sci 2010;99(1):368-84
  • Fu HL, Li YQ, Shao L, Gene expression mediated by dendrimer/DNA complexes encapsulated in biodegradable polymer microspheres. J Microencapsul 2010;27(4):345-54
  • Zhang XQ, Intra J, Salem AK. Conjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery. Bioconjug Chem 2007;18(6):2068-76
  • Tomioka A, Tanaka M, De Velasco MA, Delivery of PTEN via a novel gene microcapsule sensitizes prostate cancer cells to irradiation. Mol Cancer Ther 2008;7(7):1864-70
  • Lin X, Jo H, Ishii TM, Controlled release of matrix metalloproteinase-1 plasmid DNA prevents left ventricular remodeling in chronic myocardial infarction of rats. Circ J 2009;73(12):2315-21
  • Parsa S, Wang Y, Fuller J, A comparison between polymeric microsphere and bacterial vectors for macrophage P388D1 gene delivery. Pharm Res 2008;25(5):1202-8
  • Sezer AD, Akbuga J. Comparison on in vitro characterization of fucospheres and chitosan microspheres encapsulated plasmid DNA (pGM-CSF): formulation design and release characteristics. AAPS PharmSciTech 2009;10(4):1193-9
  • Frechet JMJ, Cohen JL, Schubert S, Acid-degradable cationic dextran particles for the delivery of siRNA therapeutics. Bioconjug Chem 2011;22(6):1056-65
  • Brandhonneur N, Chevanne F, Vie V, Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur J Pharm Sci 2009;36(4-5):474-85
  • Bradley M, Alexander L, Sanchez-Martin RM. Cellular uptake of fluorescent labelled biotin-streptavidin microspheres. J Fluoresc 2008;18(3-4):733-9
  • Alexander LM, Sanchez-Martin RM, Bradley M. Knocking (anti)-sense into cells: the microsphere approach to gene silencing. Bioconjug Chem 2009;20(3):422-6
  • Wang D, Molavi O, Lutsiak ME, Poly(D,L-lactic-co-glycolic acid) microsphere delivery of adenovirus for vaccination. J Pharm Pharm Sci 2007;10(2):217-30
  • Ahire VJ, Sawant KK, Doshi JB, Chitosan microparticles as oral delivery system for tetanus toxoid. Drug Dev Ind Pharm 2007;33(10):1112-24
  • Torres MP, Wilson-Welder JH, Lopac SK, Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomater 2011;7(7):2857-64
  • Gunbeyaz M, Faraji A, Ozkul A, Chitosan based delivery systems for mucosal immunization against bovine herpesvirus 1 (BHV-1). Eur J Pharm Sci 2010;41(3-4):531-45
  • Mata E, Igartua M, Hernández RM, Comparison of the adjuvanticity of two different delivery systems on the induction of humoral and cellular responses to synthetic peptides. Drug Deliv 2010;17(7):490-9
  • Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res 2010;27(5):905-19
  • Román BS, Irache JM, Gómez S, Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. Eur J Pharm Biopharm 2008;70(1):98-108
  • Foged C, Brodin B, Frokjaer S, Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 2005;298(2):315-22
  • Yoshida M, Babensee JE. Differential effects of agarose and poly(lactic-co-glycolic acid) on dendritic cell maturation. J Biomed Mater Res A 2006;79A(2):393-408
  • Schliehe C, Schliehe C, Thiry M, Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 2011;151(3):278-85
  • Yoshida M, Babensee JE. Molecular aspects of microparticle phagocytosis by dendritic cells. J Biomater Sci Polym Ed 2006;17(8):893-907
  • Waeckerle-Men Y, Groettrup M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 2005;57(3):475-82
  • Luby TM. Targeting cytochrome P450 CYP1B1 with a therapeutic cancer vaccine. Expert Rev Vaccines 2008;7(7):995-1003
  • Gribben JG, Ryan DP, Boyajian R, Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 2005;11(12):4430-6
  • Barbon CM, Baker L, Lajoie C, In vivo electroporation enhances the potency of poly-lactide co-glycolide (PLG) plasmid DNA immunization. Vaccine 2010;28(50):7852-64
  • Matijevic M, Hedley ML, Urban RG, Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol 2011;270(1):62-9
  • Pan CH, Nair N, Adams RJ, Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques. Clin Vaccine Immunol 2008;15(4):697-706
  • Liman M, Peiser L, Zimmer G, A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(d,l-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus. Vaccine 2007;25(46):7914-26
  • Singh M, Fang J-H, Kazzaz J, A modified process for preparing cationic polylactide-co-glycolide microparticles with adsorbed DNA. Int J Pharm 2006;327(1-2):1-5
  • Wischke C, Borchert HH, Zimmermann J, Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J Control Release 2006;114(3):359-68
  • Nguyen DN, Raghavan SS, Tashima LM, Enhancement of poly(orthoester) microspheres for DNA vaccine delivery by blending with poly(ethylenimine). Biomaterials 2008;29(18):2783-93
  • Liu S, Danquah MK, Forde GM, Microparticle-mediated gene delivery for the enhanced expression of a 19-kDa fragment of merozoite surface protein 1 of Plasmodium falciparum. Biotechnol Prog 2010;26(1):257-62
  • Pai Kasturi S, Qin H, Thomson KS, Prophylactic anti-tumor effects in a B cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized PLGA microparticles. J Control Release 2006;113(3):261-70
  • Spearman P, Lally MA, Elizaga M, A trimeric, V2-deleted HIV-1 envelope glycoprotein vaccine elicits potent neutralizing antibodies but limited breadth of neutralization in human volunteers. J Infect Dis 2011;203(8):1165-73
  • Singh M, Kazzaz J, Chesko J, Anionic microparticles are a potent delivery system for recombinant antigens from Neisseria meningitidis serotype B. J Pharm Sci 2004;93(2):273-82
  • Chesko J, Kazzaz J, Ugozzoli M, Characterization of antigens adsorbed to anionic PLG microparticles by XPS and TOF-SIMS. J Pharm Sci 2008;97(4):1443-53
  • Caputo A, Castaldello A, Brocca-Cofano E, Induction of humoral and enhanced cellular immune responses by novel core-shell nanosphere- and microsphere-based vaccine formulations following systemic and mucosal administration. Vaccine 2009;27(27):3605-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.