723
Views
55
CrossRef citations to date
0
Altmetric
Reviews

Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery

, &
Pages 115-130 | Published online: 30 Nov 2012

Bibliography

  • Pires A, Fortuna A, Alves G, Falcao A. Intranasal drug delivery: how, why and what for. J Pharm Pharm Sci 2009;12(3):288-311
  • Dressman JB, Thelen K, Jantratid E. Towards quantitative prediction of oral drug absorption. Clin Pharmacokinet 2008;47:655-67
  • Shojaei H. Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci 1998;1:15-30
  • Nandgude T, Thube R, Jaiswal N, Formulation and evaluation of pH induced in-situ nasal gel of salbutamol sulphate. Int J Pharm Sci Nanotechnol 2008;1:177-83
  • Behl CR, Pimplaskar HK, Sileno AP, Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev 1998;299:89-116
  • Verma P, Thakur AS, Deshmukh K, Routes of drug administration. Int J Pharm Stud Res 2010;1(1):54-9
  • Hussain A. Intranasal drug delivery. Adv Drug Deliv Rev 1998;29:39-49
  • Chugh Y, Kapoor P, Kapoor AK. Intranasal drug delivery: a novel approach. Indian J Otolaryngol Head Neck Surg 2009;61:90-4
  • Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today 2002;7:967-75
  • Ugwoke MI, Agu RU, Verbeke N, Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev 2005;57:1640-65
  • Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose to brain targeting. Expert Opin Drug Deliv 2012;9:19-31
  • Gomez D, Martinez JA, Hanson LR, Intranasal treatment of neurodegenerative diseases and stroke. Front Biosci 2012;S4:74-89
  • Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today 2002;7:1184-9
  • Costantino HR, Illium L, Brandt G, Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 2007;337:1-24
  • Ding WX, Qi XR, Fu Q, Pharmacokinetics and pharmacodynamics of sterylglucoside-modified liposomes for levonorgestrel delivery via nasal route. Drug Deliv 2007;14:101-4
  • Kilian N, Müller DG. The effect of a viscosity and an absorption enhancer on the intra nasal absorption of metoprolol in rats. Int J Pharm 1998;163:211-17
  • D'Souza R, Mutalik S, Venkatesh M, Nasal insulin gel as an alternative to parenteral insulin: formulation, preclinical and clinical studies. AAPS PharmSciTech 2005;6(2):184-9
  • Onischuk AA, Tolstikova TG, Sorokina IV. Anti-inflammatory effect from indomethacin nanoparticles inhaled by male mice. J Aerosol Med Pulm Drug Deliv 2008;21:231-43
  • Alsarra IA, Hamed AY, Alanazi FK. Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv 2008;15:313-21
  • Patel HK, Suthar RM, Patal SR, Nasal drug delivery system for targeting to brain. Int J Pharm Innovat 2011;1:1-11
  • Talegonkar S, Mishra PR. Intranasal delivery: an approach to bypass the blood brain barrier. Indian J Pharmacol 2004;36:140-7
  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012;64:614-28
  • Jadhav KS, Gambhire MN, Shaikh IM, Nasal drug delivery systems-factors affecting and applications. Curr Drug Ther 2007;2:27-38
  • Chien YW, Su KSE, Chang S. Nasal systemic drug delivery. Marcel Dekker; USA: 1989. p. 1-38
  • Grassin-Delyle S, Buenestado A, Naline E, Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther 2012;134:366-79
  • Kimura R, Miwa M, Kato Y. Nasal absorption of tetraethylammonium in rats. Arch Int Pharmacodyn Ther 1989;302:7-17
  • Illum L. Nasal drug delivery: possibilities, problems and solutions. J Control Release 2003;87:187-98
  • Marttin E, Schipper NGM, Verhoef JC, Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev 1998;29:13-38
  • Bhise SB. Yadav, AV, Avachat AM, et al. Bioavailability of intranasal drug delivery system. Asian J Pharm 2008;2:210-15
  • Zaki NM, Awad GA, Mortada ND, Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci 2007;32:296-307
  • He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189-207
  • Chenite A, Buschmann M, Wang D, Rheological characterization of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 2001;46:39-47
  • Barry BW, Meyer MC. The rheological properties of carbopol gels I. Continuous shear and creep properties of carbopol gels. Int J Pharm 1979;1:1-25
  • Cao SL, Zhang Q, Jiang X. A novel nasal delivery system of a Chinese traditional medicine, Radix bupleuri, based on the concept of ion-activated in situ gel. Arch Pharm Res 2007;30:1014-19
  • Dia L, Liu X, Tong Z. Critical behavoiur at sol-gel transition in gellan gum aqueous solutions with KCl and CaCl2 of different concentrations. Carbohydr Polym 2010;81:207-12
  • Fraeye I, Doungla E, Duvetter T, Influence of intrinsic and extrinsic factors on rheology of pectin-calcium gels. Food Hydrocol 2009;23:2069-77
  • Round AN, Rigby NM, MacDougall AJ, A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr Res 2011;345:487-97
  • Fraeye I, Colle I, Vandevenne E, Influence of pectin structure on texture of pectin-calcium gels. Innovative Food Sci Emerging Technol 2010;11:401-9
  • Cardoso SM, Coimbra MA, Da-Silva JAL. Temperature dependence of the formation and melting of pectin-Ca2+ networks: a rheological study. Food Hydrocol 2003;17:801-7
  • Braccini I, Pacrez S. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromology 2001;2:1089-96
  • Lin HR, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J control Release 2000;69:379-88
  • French DL, Himmelstein KJ, Mauger JW. Physicochemical aspects of controlled release of substituted benzoic and naphthoic acids from carbopol gels. J Control Release 1995;37:281-9
  • Taberner TS, Villodre AM, Delfina JMP, Consistency of carbopol 971-P NF gels and influence of soluble and cross-linked PVP. Int J Pharm 2002;233:43-50
  • Nickerson MT, Paulson AT, Speers RA. Rheological properties of gellan solutions: effect of calcium ions and temperature on pre-gel formation. Food Hydrocol 2003;17:577-83
  • Matsukawa S, Watanabe T. Gelation mechanism and network structure of mixed solution of low- and high-acyl gellan studied by dynamic viscoelasticity, CD and NMR measurements. Food Hydrocol 2007;21:1355-61
  • Garcia MC, Alfaro MC, Calero N, Influence of gellan gum concentration on the dynamic viscoelasticity and transient flow of fluid gels. Biochem Eng J 2011;55:73-81
  • Lau MH, Tang J, Paulson AT. Effect of polymer ratio and calcium concentration on gelation properties of gellan/gelatin mixed gels. Food Res Int 2001;34:879-86
  • Nakamura K, Harada K, Tanaka Y. Viscoelastic properties of aqueous solutions: the effects of concentration on gelation. Food Hydrocol 1993;7:435-47
  • Hoemann CD, Chenite A, Sun J, Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal. J Biomed Mater Res 2007;MB86:521-9
  • Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010;62:83-90
  • Chenite A, Chaput C, Wang D, Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21:2155-61
  • Rassing J, Mckenna W, Bandyopadhyay S, Ultrasonic and 13C-NMR studies on gel formation in aqueous solution of ABA block copolymeric Pluronic F-127. J Mol Liq 1984;27:165-78
  • Zhou Z, Chu B. Light scattering study on the association behavior of triblock polymers of ethylene oxide and propylene oxide in aqueous solution. J Colloids Interface Sci 1988;126:171-80
  • Attwood D, Collett JH, Tait CJ. The micellar properties of the poly(oxyethylene)-poly(oxypropylene) copolymer Pluronic F127 in water and electrolyte solution. Int J Pharm 1985;26:25-33
  • Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 2002;54:37-51
  • Calejo MT, Kjoniksen AL, Pinazo A, Thermoresponsive hydrogels with low toxicity form mixtures of ethyl (hydroxyethyl) cellulose and arginine-based surfactants. Int J Pharm 2012;436:454-62
  • Nystrom B, Walderhaug H, Hansen FK. Rheological behavior during thermoreversible gelation of aqueous mixtures of ethyl(hydroxyethyl) cellulose and surfactants. Langmuir 1995;11:750-7
  • Kjøniksen AL, Nyström B, Lindman B. Dynamic viscoelasticity of gelling and nongelling aqueous mixtures of ethyl (hydroxyethyl) cellulose and an ionic surfactant. Macromolecules 1998;31:1852-8
  • Nazar H, Fatorous SM, Merve SM, Thermosensitive hydrogels for nasal delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 2011;77:225-32
  • Wu Y, Wei W, Zhou M, Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials 2012;33:2351-60
  • Wu Y, Wu S, Hou L, Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery. Eur J Pharm Biopharm 2012; published online 31 March 2012; doi:10.1016/j.ejph2012.03.021
  • Chaudhari P, Ajab A, Malpure P, Development and in vitro evaluation of thermoreversible nasal gel formulations of rizatriptan benzoate. Indian J Pharm Edu Res 2009;43(1):55-62
  • Chand R, Naik AA, Nair HA. Thermoreversible biogels for intranasal delivery of rizatriptan benzoate. Indian J Pharm Sci 2012;1:723-5
  • Wu J, Wei W, Wang L, A thermosensitive hydrogel based on quaternized chitosan and poly (ethylene glycol) for nasal drug delivery system. Biomaterials 2007;28:2220-32
  • Chung T, Liu D, Yang J. Effects of interpenetration of thermo-sensitive gels by crosslinking of chitosan on nasal delivery of insulin: in vitro characterization and in vivo study. Carbohydr Polym 2010;82:316-22
  • Agrawal AK, Gupta PN, Khanna A, Development and characterization of in situ gel system for nasal insulin delivery. Die Pharmazie An Int J Pharm Sci 2010;65(3):188-93
  • Vamshi KT, Madhusudan RY. Formulation and evaluation of insulin nasal gel. Int J Pharm Pharm Sci 2010;2(3):161-4
  • Shinde JV, Mali KK, Dias RJ, Insitu mucoadhesive nasal gels of metoclopramide hydrochloride: preformulation and formulation studies. J Pharm Res 2008;1(1):88-96
  • Majithiya RJ, Ghosh PK, Umrethia ML, Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech 2006;7(3):1-7
  • Badgujar SD, Sontakke MA, Narute DR, Formulation and evaluation of sumatriptan succinate nasal in-situ gel using fulvic acid as novel permeation enhancer. Int J Pharm Res Dev 2010;2(8):38-52
  • Mahajan H, Shah S, Surana S. Nasal in situ gel containing hydroxy propyl β-cyclodextrin inclusion complex of artemether: development and in vitro evaluation. J Incl Phenom Macrocycl Chem 2011;70:49-58
  • Chao HJ, Balakrishnan P, Park EK, Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J Pharm Sci 2011;100:681-91
  • Basu S, Bandyopadhyay AK. Development and characterisation of mucoadhesive in situ nasal gel of midazolam prepared with Ficus carica mucilage. AAPS PharmSciTech 2010;11(3):1223-31
  • Patel M, Thakkar H, Kasture PV. Preparation and evaluation of thermoreversible formulations of flunarizine hydrochloride for nasal delivery. Int J Pharm Pharm Sci 2010;2(4):116-20
  • Gaikwad V. Formulation and evaluation of in-situ gel of metoprolol tartrate for nasal delivery. J Pharm Res 2010;3(4):788-93
  • Bhalerao AV, Lonkar SL, Deshkar SS, Nasal mucoadhesive in situ gel of ondansetron hydrchloride. Indian J Pharm Sci 2009;71(6):711-13
  • Nimgulkar CC, Patil SD, Chauk DS. Evaluation of Blatta orientalis (Q) nasal gel formulation in milk aspiration induced eosinophilia. Pharm Dev Technol 2009;14(4):435-41
  • Mehta MR, Surve SA, Menon MD. Novel nasal in situ gelling system for treatment of sinusitis. Indian J Pharm Sci 2009;71(6):721-2
  • Khan S, Patil K, Bobade N, Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target 2010;18(3):223-34
  • Zhao Y, Yue P, Tao T, Drug brain distribution following intranasal administration of huperzine A in situ gel in rats. Acta Pharmacol Sin 2007;28:273-8
  • Kuotsu K, Bandyopadhyay AK. Development of oxytocin nasal gel using natural mucoadhesive agent obtained from the fruits of Dellinia indica, L. Sci Asia 2007;33:57-60
  • Pisal SS, Paradkar AR, Kakasaheb RM, Pluronic gels for nasal delivery of vitamin B12 part I: preformulation study. Int J Pharm 2004;270:37-45
  • Park JS, Oh YK, Yoon H, In situ gelling and mucoadhesive polymer vehicles for controlled intranasal delivery of plasmid DNA. J Biomed Mater Res 2001;144-51
  • Agrawal A, Maheshwari R. Formulation development and evaluation of in situ nasal gel of poorly water soluble drug using mixed solvency concept. Asian J Pharm 2011;5(3):131-40
  • Chaudhari SP, Bhise P, Lahane A, Formulation and evaluation of thermoreversible mucoadhesive based in situ gel of anti osteoporotic agent. J Global Pharm Technol 2009;2(10):43-7
  • Shah RA, Mehta MR, Patel DM, Design and optimization of mucoadhesive nasal in situ gel containing sodium cromoglycate using factorial design. Asian J Pharm 2011;5(2):65-74
  • Rathnam G, Narayan N, Ilavarasa R. Preparation and evaluation of carbopol based nasal gels for systemic delivery of progesterone. Int J Pharm Res Dev 2010;2(1):1-11
  • Aikawa K, Mitsutake N, Uda H, Drug release from pH-response polyvinylacetal diethylaminoacetate hydrogel, and application to nasal delivery. Int J Pharm 1998;168(2):181-8
  • Nakamura K, Maitani Y, Lowman AM, Uptake and release of budesonide from mucoadhesive, pH-sensitive copolymers and their application to nasal delivery. J Control Release 1999;61(3):329-35
  • Cao S, Ren X, Zhang Q, In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int J Pharm 2009;365:109-15
  • Cao S, Zhang Q, Jiang X. Preparation of ion-activated in situ gel systems of scopolamine hydrobromide and evaluation of its antimotion sickness efficacy. Acta Pharmacol Sin 2006;28:584-90
  • Belgamwar V, Chauk D, Mahajan H, Formulation and evaluation of in situ nasal gelling system of dimenhydrinate for nasal administration. Pharm Dev Technol 2009;14(3):240-8
  • Mahajan H, Shaikh H, Gattani S, In-situ gelling system based on thiolated gellan gum as new carrier for nasal administration of dimenhydrinate. Int J Pharm Sci Nanotechnol 2009;2(2):544-50
  • Chen E, Chen J, Cao S, Preparation of nasal temperature-sensitive in situ gel of Radix bupleuri and evaluation of the febrile response mechanism. Drug Dev Ind Pharm 2010;36(4):490-6
  • Chelladurai S, Mishra M, Mishra B. Design and evaluation of bioadhesive in-situ nasal gel of ketorolac tromethamine. Chem Pharm Bull 2008;56(11):1596-9
  • Shelke RR, Devarajan PV. Aqua triggered in situ gelling microemulsion for nasal delivery. Indian J Pharm Sci 2007;69(5):726-7
  • Morath LP, Edman P. Influence of osmolarity on nasal absorption of insulin from the thermogelling polymer ethyl (hydroxyethyl) cellulose. Int J Pharm 1995;125:205-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.