1,345
Views
172
CrossRef citations to date
0
Altmetric
Reviews

Cocrystallization for successful drug delivery

, PhD
Pages 201-213 | Published online: 21 Dec 2012

Bibliography

  • Blagden N, de Matas M, Gavan P, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Del Rev 2007;59:617-30
  • Guidance for industry: regulatory classification of pharmaceutical co-crystals. Food and Drug Administration; Silver Spring, MD; 2011
  • Almarsson Ö, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Comm 2004(17):1889-96
  • Friščić T, Jones W. Benefits of cocrystallisation in pharmaceutical materials science: an update. J Pharm Pharmacol 2010;62:1547-59
  • Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des 2009;9:2950-67
  • Delori A, Friščić T, Jones W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm 2012;14:2350-62
  • Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci 2006;95(3):499-516
  • Variankaval N, Wenslow R, Murry J, Preparation and solid-state characterization of nonstoichiometric cocrystals of a phosphodiesterase-IV inhibitor and L-tartaric acid. Cryst Growth Des 2006;6:690-700
  • Friščić T, Fábián L, Burley JC, Exploring cocrystal–cocrystal reactivity via liquid-assisted grinding: the assembling of racemic and dismantling of enantiomeric cocrystals. Chem Comm 2006(48):5009-11
  • Caner H, Groner E, Levy L, Agranat I. Trends in the development of chiral drugs. Drug Discov Today 2004;9:105-10
  • Smith SW. Chiral toxicology: it's the same thing...only different. Toxicol Sci 2009;110(1):4-30
  • Toda F, Tanaka K, Miyamoto H, Formation of racemic compound crystals by mixing of two enantiomeric crystals in the solid state. Liquid transport of molecules from crystal to crystal. J Chem Soc, Perkin Trans 1997;2:1877-85
  • Jacques J, Collet A, Wilen SH. Enantiomers, racemates, and resolutions. Krieger Publishing Co; Malabar FL: 1991
  • Li ZJ, Abramov Y, Bordner J, Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy. J Am Chem Soc 2006;128:8199-210
  • Steiner T, Majerz I, Wilson CC. First O-H-N hydrogen bond with a centered proton obtained by thermally induced proton migration. Angew Chem Int Ed 2001;40:2651-4
  • Childs SL, Stahly GP, Park A. The salt-cocrystal continuum: the influence of crystal structure on ionization state. Mol Pharm 2007;4:323-38
  • Haynes DA, Jones W, Motherwell WD. Cocrystallisation of succinic and fumaric acids with lutidines: a systematic study. CrystEngComm 2006;8:830-40
  • Childs SL, Hardcastle KI. Cocrystals of piroxicam with carboxylic acids. Cryst Growth Des 2007;7:1291-304
  • Perumalla SR, Sun CC. Confused HCl: hydrogen chloride or hydrochloric acid? Chem Eur J 2012;18:6462-6
  • Perumalla SR, Sun CC. Design and synthesis of solid state structures with conjugate acid–base pair interactions. CrystEngComm 2012;14:3851-3
  • Braga D, Grepioni F, Maini L, From unexpected reactions to a new family of ionic co-crystals: the case of barbituric acid with alkali bromides and caesium iodide. Chem Comm 2010;46:7715-17
  • Nehm SJ, Rodriguez-Spong B, Rodriguez-Hornedo N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst Growth Des 2006;6:592-600
  • Bethune SJ, Huang N, Jayasanka A, Rodríguez-Hornedo N. Understanding and predicting the effect of cocrystal components and pH on cocrystal solubility. Cryst Growth Des 2009;9:3976-88
  • Aitipamula S, Banerjee R, Bansal AK, Polymorphs, salts, and cocrystals: what's in a name? Cryst Growth Des 2012;12:2147-52
  • Sun CC. Materials science tetrahedron – a useful tool for pharmaceutical research and development. J Pharm Sci 2009;98:1671-87
  • Chow SF, Chen M, Shi L, Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res 2012;29:1854-65
  • Good DJ, Rodriguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des 2009;9:2252-64
  • Aakeröy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc 2009;131:17048-9
  • Cheney ML, Shan N, Healey ER, Effects of crystal form on solubility and pharmacokinetics: a crystal engineering case study of lamotrigine. Cryst Growth Des 2010;10:394-405
  • Gao Y, Zu H, Zhang J. Enhanced dissolution and stability of adefovir dipivoxil by cocrystal formation. J Pharm Pharmacol 2011;63:483-90
  • Shiraki K, Takata N, Takano R, Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm Res 2008;25:2581-92
  • Childs SL, Chyall LJ, Dunlap JT, Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc 2004;126:13335-42
  • Puschner B, Poppenga RH, Lowenstine LJ, Assessment of melamine and cyanuric acid toxicity in cats. J Vet Diagn Invest 2007;19:616-24
  • McNamara DP, Childs SL, Giordano J, Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res 2006;23:1888-97
  • Trask AV, Motherwell WDS, Jones W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des 2005;5:1013-21
  • Trask AV, Motherwell WDS, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm 2006;320:114-23
  • Ghosh S, Bag PP, Reddy CM. Co-crystals of sulfamethazine with some carboxylic acids and amides: co-former assisted tautomerism in an active pharmaceutical ingredient and hydrogen bond competition study. CrystEngComm 2011;11:3489-503
  • Vangala VR, Chow PS, Tan RBH. Characterization, physicochemical and photo-stability of a co-crystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acid. CrystEngComm 2011;13:759-62
  • Braga D, Grepioni F. Reactions between or within molecular crystals. Angew Chem Int Ed 2004;43:4002-11
  • MacGillivray LR, Papaefstathiou GS, Friščić T, Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal−organic frameworks. Acc Chem Res 2008;41:280-91
  • Duncan-Hewitt WC, Weatherly GC. Modeling the uniaxial compaction of pharmaceutical powders using the mechanical properties of single crystals. II: brittle materials. J Pharm Sci 1990;79:273-8
  • Duncan-Hewitt WC, Weatherly GC. Modeling the uniaxial compaction of pharmaceutical powders using the mechanical properties of single crystals. I: Ductile materials. J Pharm Sci 1990;79:147-52
  • Meier M, John E, Wieckhusen D, Influence of mechanical properties on impact fracture: prediction of the milling behaviour of pharmaceutical powders by nanoindentation. Powder Technol 2009;188:301-13
  • Sun CC. Decoding powder tabletability – roles of particle adhesion and plasticity. J Adhes Sci Technol 2011;25(4):483-99
  • Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des 2008;8(5):1575-9
  • Karki S, Friščić T, Fábián L, Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater 2009;21:3905-9
  • Chattoraj S, Shi L, Sun CC. Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate, and their 1:1 cocrystal. CrystEngComm 2010;12:2466-72
  • Perumalla SR, Shi L, Sun CC. Improved mechanical properties of an ionized form of acetaminophen. CrystEngComm 2012;14:2389-90
  • Sun CC, Grant DJW. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm Res 2001;18(3):274-80
  • Bag PP, Chen M, Sun CC, Reddy CM. Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound. CrystEngComm 2012;14:3865-7
  • Lundblad RL, Macdonald FM. Handbook of biochemistry and molecular biology. 4th edition. CRC Press; New York: 2010. p. 537-945
  • Banerjee R, Bhatt PM, Ravindra NV, Desiraju GR. Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities. Cryst Growth Des 2005;5:2299-309
  • Porter WW III, Elie SC, Matzger AJ. Polymorphism in carbamazepine cocrystals. Cryst Growth Des 2008;8:14-16
  • Aitipamula S, Chow PS, Tan RBH. Dimorphs of a 1:1 cocrystal of ethenzamide and saccharin: solid-state grinding methods result in metastable polymorph. CrystEngComm 2009;11:889-95
  • Basavoju S, Boström D, Velaga SP. Indomethacin–saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res 2008;25:530-41
  • Bhatt PM, Ravindra NV, Banerjeea R, Desiraju GR. Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. Chem Commun 2005;1073-5
  • Takata N, Takano R, Uekusa H, A spironolactone−saccharin 1:1 cocrystal hemihydrate. Cryst Growth Des 2010;10:2116-22
  • Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm 2008;10:665-8
  • Jeanjean B, Alberola S, Terol A, Sabon F. Study of paracetamol-theophylline and paracetamol-caffeine associations. Ann Pharm Fr 1979;37:95-100
  • Aitipamula S, Chow PS, Tan RBH. Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs. CrystEngComm 2009;11:1823-7
  • Vishweshwar P, McMahon JA, Peterson ML, Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients. Chem Comm 2005;4601-3
  • Sanphui P, Goud NR, Khandavilli UBR, Nangia A. Fast dissolving curcumin cocrystals. Cryst Growth Des 2011;11:4135-45
  • Schultheiss N, Bethune S, Henck J-O. Nutraceutical cocrystals: utilizing pterostilbene as a cocrystal former. CrystEngComm 2010;12:2436-42
  • Bethune SJ, Schultheiss N, Henck J-O. Improving the poor aqueous solubility of nutraceutical compound pterostilbene through cocrystal formation. Cryst Growth Des 2011;11:2817-23
  • Miller JM, Collman BM, Greene LR, Identifying the stable polymorph early in the drug discovery–development process. Pharm Dev Technol 2005;10:291-7
  • Zhang GGZ, Henry RF, Borchardt TB, Lou X. Efficient co-crystal screening using solution-mediated phase transformation. J Pharm Sci 2007;96:990-5
  • Bag PP, Patni M, Reddy CM. A kinetically controlled crystallization process for identifying new co-crystal forms: fast evaporation of solvent from solutions to dryness. CrystEngComm 2011;13:5650-2
  • Padrela L, Rodrigues MA, Velaga SP, Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci 2009;38:9-17
  • Jayasankar A, Somwangthanaroj A, Shao ZJ, Rodríguez-Hornedo N. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm Res 2006;23:2381-92
  • Chadwick K, Davey R, Cross W. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. CrystEngComm 2007;9:732-4
  • Friščić T, Jones W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des 2009;9:1621-37
  • Chattoraj S, Bhugra C, Telang C, Origin of two modes of non-isothermal crystallization of glasses produced by milling. Pharm Res 2012;29:1020-32
  • Friščić T, Trask AV, Jones W, Motherwell WDS. Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. Angew Chem Int Ed 2006;118:7708-12
  • Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des 2009;9:1106-23
  • Berry DJ, Seaton CC, Clegg W, Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des 2008;8:1697-712
  • Medina C, Daurio D, Nagapudi K, Alvarez-Nunez F. Manufacture of pharmaceutical co-crystals using twin screw extrusion: a solvent-less and scalable process. J Pharm Sci 2010;99:1693-6
  • Desiraju GR. Supramolecular synthons in crystal engineering – a new organic synthesis. Angew Chem Int Ed 2003;34:2311-27
  • Vishweshwar P, McMahon JA, Oliveira M, The predictably elusive form II of aspirin. J Am Chem Soc 2005;127:16802-3
  • Lemmerer A, Bernstein J, Griesser UJ, A tale of two polymorphic pharmaceuticals: pyrithyldione and propyphenazone and their 1937 co-crystal patent. Chem Eur J 2011;17:13445-60
  • Ueto T, Takata N, Muroyama N, Polymorphs and a hydrate of furosemide−nicotinamide 1:1 cocrystal. Cryst Growth Des 2012;12:485-94
  • Gryl M, Krawczuk A, Stadnicka K. Polymorphism of urea–barbituric acid co-crystals. Acta Cryst Sect B-Struct Sci 2008;64:623-32
  • Braga D, Palladino G, Polito M, Three polymorphic forms of the co-crystal 4,4′-bipyridine/pimelic acid and their structural, thermal, and spectroscopic characterization. Chem Euro J 2008;14:10149-59
  • Stahly GP. Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst Growth Des 2007;7:1007-26
  • Aakeroy CB, Beatty AM, Helfrich BA. Total synthesis” supramolecular style: design and hydrogen-bond-directed assembly of ternary supermolecules. Angew Chem Int Ed 2001;40:3240-2
  • Karki S, Friščić T, Jones W, Motherwell WDS. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol Pharm 2007;3:347-54
  • Bhogala BR, Basavoju S, Nangia A. Three-component carboxylic acid-bipyridine lattice inclusion host. Supramolecular synthesis of ternary cocrystals. Cryst Growth Des 2005;5:1683-6
  • Cheung EY, Kitchin SJ, Harris KDM, Direct structure determination of a multicomponent molecular crystal prepared by a solid-state grinding procedure. J Am Chem Soc 2003;125:14658-9
  • Aakeroy CB, Desper J, Smith MM. Constructing, deconstructing, and reconstructing ternary supermolecules. Chem Comm 2007;3936-8
  • Tothadi S, Mukherjee A, Desiraju GR. Shape and size mimicry in the design of ternary molecular solids: towards a robust strategy for crystal engineering. Chem Comm 2011;47:12080-2
  • Sherman BC. Solid substances comprising valproic acid and sodium valproate. US6077542; 2000
  • Petrusevski G, Naumov P, Jovanovski G, Solid-state forms of sodium valproate, active component of the anticonvulsant drug Epilim. ChemMedChem 2008;3:1377-86
  • Brittain HG. Vibrational spectroscopic studies of cocrystals and salts. 3. Cocrystal products formed by benzenecarboxylic acids and their sodium salts. Cryst Growth Des 2010;10:1990-2003
  • Brittain HG. Vibrational spectroscopic studies of cocrystals and salts. 4. Cocrystal products formed by benzylamine, alpha-methylbenzylamine, and their chloride salts. Cryst Growth Des 2011;11:2500-9
  • Pop M, Sieger P, Cains P. Tiotropium fumarate: an interesting pharmaceutical cocrystal. J Pharm Sci 2009;98:1820-34
  • Chen AM, Ellison ME, Peresypkin A, Development of a pharmaceutical cocrystal of a monophosphate salt with phosphoric acid. Chem Comm 2007;419-21
  • Harrison WTA, Yathirajan HS, Bindya S, Escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal. Acta Cryst 2007;C63:o129-31
  • Smaldone RA, Forgan RS, Furukawa H, Metal–organic frameworks from edible natural products. Angew Chem Int Ed 2010;49:8630-4
  • Miller JS, Stevens KR, Yang MT, Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012;11:768-74
  • Bak A, Gore A, Yanez E, The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J Pharm Sci 2008;97:3942-56
  • Arora KK, Tayade NG, Suryanarayanan R. Unintended water mediated cocrystal formation in carbamazepine and aspirin tablets. Mol Pharm 2011;8:982-9
  • Good D, Miranda C, Rodríguez-Hornedo N. Dependence of cocrystal formation and thermodynamic stability on moisture sorption by amorphous polymer. CrystEngComm 2011;13:1181-9
  • Zhang S-W, Guzei IA, de Villiers MM, Formation enthalpies and polymorphs of nicotinamide–R-mandelic acid co-crystals. Cryst Growth Des 2012;12:4090-7
  • Karamertzanis PG, Kazantsev AV, Issa N, Can the formation of pharmaceutical cocrystals be computationally predicted? 2. Crystal structure prediction. J Chem Theory Comput 2009;5:1432-48
  • Day GM, Cooper TG, Cruz-Cabeza AJ, Significant progress in predicting the crystal structures of small organic molecules – a report on the fourth blind test. Acta Cryst 2009;B65:107-25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.