123
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Polymeric colloidal particulate systems: intelligent tools for intracellular targeting of antileishmanial cargos

, , , &
Pages 1633-1651 | Published online: 23 Oct 2013

Bibliography

  • Herwaldt BL. Leishmaniasis. Lancet 1999;354(9185):1191–9
  • Guerin PJ, Olliaro P, Sundar S, et al. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2002;2(8):494–501
  • Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 2007;5(11):873-82
  • Maltezou HC. Drug resistance in visceral leishmaniasis. J Biomed Biotechnol 2010;2010:617521
  • El-On J. Current status and perspectives of the immunotherapy of leishmaniasis. Isr Med Assoc J 2009;11(10):623-8
  • Ngouateu OB, Kollo P, Ravel C, et al. Clinical features and epidemiology of cutaneous leishmaniasis and Leishmania major/HIV co-infection in Cameroon: results of a large cross-sectional study. Trans R Soc Trop Med Hyg 2012;106(3):137-42
  • Cota GF, de Sousa MR, Rabello A. Predictors of visceral leishmaniasis relapse in HIV-infected patients: a systematic review. PLoS Negl Trop Dis 2011;5(6):e1153
  • Forrest ML, Kwon GS. Clinical developments in drug delivery nanotechnology. Adv Drug Deliv Rev 2008;60(8):861-2
  • Kumar N, Gupta S, Dube A, et al. Emerging role of vesicular carriers for therapy of visceral leishmaniasis: conventional versus novel. Crit Rev Ther Drug Carrier Syst 2010;27(6):461-507
  • Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 2007;59(6):505-21
  • Doroud D, Rafati S. Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems. Expert Rev Vaccines 2012;11(1):69-86
  • Gershkovich P, Sivak O, Wasan EK, et al. Biodistribution and tissue toxicity of amphotericin B in mice following multiple dose administration of a novel oral lipid-based formulation (iCo-009). J Antimicrob Chemother 2010;65(12):2610-13
  • Gupta S, Dube A, Vyas SP. Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. J Drug Target 2007;15(6):437-44
  • Frézard F, Demicheli C. New delivery strategies for the old pentavalent antimonial drugs. Expert Opin Drug Deliv 2010;7(12):1343-58
  • Alexander J, Russell DG. The interaction of Leishmania species with macrophages. Adv Parasitol 1992;31:175-254
  • Hammarton TC, Mottram JC, Doerig C. The cell cycle of parasitic protozoa: potential for chemotherapeutic exploitation. Prog Cell Cycle Res 2003;5:91-101
  • Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 2007;7(12):964-74
  • Ueno N, Wilson ME. Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends Parasitol 2012;28(8):335-44
  • Sacks D, Sher A. Evasion of innate immunity by parasitic protozoa. Nat Immunol 2002;3(11):1041-7
  • Naderer T, Vince JE, McConville MJ. Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host. Curr Mol Med 2004;4(6):649-65
  • Burchmore RJ, Barrett MP. Life in vacuoles–nutrient acquisition by Leishmania amastigotes. Int J Parasitol 2001;31(12):1311-20
  • Wanderley JL, Moreira ME, Benjamin A, et al. Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol 2006;176(3):1834-9
  • Yurdakul P. Immunopathogenesis of Leishmania infections. Mikrobiyol Bul 2005;39(3):363-81
  • Bogdan C, Moll H, Solbach W, et al. Tumor necrosis factor-alpha in combination with interferon-gamma, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. Eur J Immunol 1990;20(5):1131-5
  • Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002;2(11):845-58
  • Agrawal AK, Gupta CM. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv Drug Deliv Rev 2000;41(2):135-46
  • Alrajhi AA, Ibrahim EA, De Vol EB, et al. Fluconazole for the treatment of cutaneous leishmaniasis caused by Leishmania major. N Engl J Med 2002;346(12):891-5
  • Koutinas AF, Saridomichelakis MN, Mylonakis ME, et al. A randomised, blinded, placebo-controlled clinical trial with allopurinol in canine leishmaniosis. Vet Parasitol 2001;98(4):247-61
  • Martin MB, Grimley JS, Lewis JC, et al. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J Med Chem 2001;44(6):909-16
  • Lopes R, Eleuterio CV, Goncalves LM, et al. Lipid nanoparticles containing oryzalin for the treatment of leishmaniasis. Eur J Pharm Sci 2012;45(4):442-50
  • Tavares J, Ouaissi A, Kong Thoo Lin P, et al. Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1. ChemMedChem 2010;5(1):140-7
  • Sett R, Basu N, Ghosh AK, et al. Potential of doxorubicin as an antileishmanial agent. J Parasitol 1992;78(2):350-4
  • Kayser O, Kiderlen AF, Bertels S, et al. Antileishmanial activities of aphidicolin and its semisynthetic derivatives. Antimicrob Agents Chemother 2001;45(1):288-92
  • Vale-Costa S, Vale N, Matos J, et al. Peptidomimetic and organometallic derivatives of primaquine active against Leishmania infantum. Antimicrob Agents Chemother 2012;56(11):5774-81
  • Murray HW, Hariprashad J. Activity of oral atovaquone alone and in combination with antimony in experimental visceral leishmaniasis. Antimicrob Agents Chemother 1996;40(3):586-7
  • Badaro R, Falcoff E, Badaro FS, et al. Treatment of visceral leishmaniasis with pentavalent antimony and interferon gamma. N Engl J Med 1990;322(1):16-21
  • Murray HW, Brooks EB, DeVecchio JL, et al. Immunoenhancement combined with amphotericin B as treatment for experimental visceral leishmaniasis. Antimicrob Agents Chemother 2003;47(8):2513-17
  • Convit J, Castellanos PL, Rondon A, et al. Immunotherapy versus chemotherapy in localised cutaneous leishmaniasis. Lancet 1987;1(8530):401-5
  • Ghose AC, Mookerjee A, Sengupta K, et al. Therapeutic and prophylactic uses of protein A in the control of Leishmania donovani infection in experimental animals. Immunol Lett 1999;65(3):175-81
  • Smith AC, Yardley V, Rhodes J, et al. Activity of the novel immunomodulatory compound tucaresol against experimental visceral leishmaniasis. Antimicrob Agents Chemother 2000;44(6):1494-8
  • Buates S, Matlashewski G. Treatment of experimental leishmaniasis with the immunomodulators imiquimod and S-28463: efficacy and mode of action. J Infect Dis 1999;179(6):1485-94
  • Monzote L. Current treatment of leishmaniasis: a review. Open Antimicrob Agents J 2009;1:9-19
  • Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev 2006;19(1):111-26
  • Polonio T, Efferth T. Leishmaniasis: drug resistance and natural products (review). Int J Mol Med 2008;22(3):277-86
  • Coelho AC, Messier N, Ouellette M, et al. Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrob Agents Chemother 2007;51(8):3030-2
  • Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem 2004;279(38):39925-32
  • Castanys-Munoz E, Alder-Baerens N, Pomorski T, et al. A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol 2007;64(5):1141-53
  • Chakraborty R, Dasgupta D, Adhya S, et al. Cationic liposome-encapsulated antisense oligonucleotide mediates efficient killing of intracellular Leishmania. Biochem J 1999;340(Pt 2):393-6
  • Noronha FS, Cruz JS, Beirao PS, et al. Macrophage damage by Leishmania amazonensis cytolysin: evidence of pore formation on cell membrane. Infect Immun 2000;68(8):4578-84
  • Quintana E, Torres Y, Alvarez C, et al. Changes in macrophage membrane properties during early Leishmania amazonensis infection differ from those observed during established infection and are partially explained by phagocytosis. Exp Parasitol 2010;124(3):258-64
  • Lamour SD, Choi BS, Keun HC, et al. Metabolic characterization of Leishmania major infection in activated and nonactivated macrophages. J Proteome Res 2012;11(8):4211-22
  • Pandya S, Verma RK, Misra A. Nanoparticles containing nitric oxide donor with antileishmanial agent for synergistic effect against visceral leishmaniasis. J Biomed Nanotechnol 2011;7(1):213-15
  • Haldar AK, Sen P, Roy S. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int 2011;2011:571242
  • Rabhi I, Rabhi S, Ben-Othman R, et al. Transcriptomic signature of leishmania infected mice macrophages: a metabolic point of view. PLoS Negl Trop Dis 2012;6(8):e1763
  • Krauth-Siegel RL, Meiering SK, Schmidt H. The parasite-specific trypanothione metabolism of trypanosoma and leishmania. Biol Chem 2003;384(4):539-49
  • Price HP, Menon MR, Panethymitaki C, et al. Myristoyl-CoA:protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem 2003;278(9):7206-14
  • Croft SL, Coombs GH. Leishmaniasis–current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 2003;19(11):502-8
  • Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci 2007;96(10):2547-65
  • Ni F, Jiang L, Yang R, et al. Effects of PEG length and iron oxide nanoparticles size on reduced protein adsorption and non-specific uptake by macrophage cells. J Nanosci Nanotechnol 2012;12(3):2094-100
  • Owais M, Gupta CM. Targeted drug delivery to macrophages in parasitic infections. Curr Drug Deliv 2005;2(4):311-18
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58(14):1532-55
  • Werbovetz KA. Target-based drug discovery for malaria, leishmaniasis, and trypanosomiasis. Curr Med Chem 2000;7(8):835-60
  • Sen N, Majumder HK. Mitochondrion of protozoan parasite emerges as potent therapeutic target: exciting drugs are on the horizon. Curr Pharm Des 2008;14(9):839-46
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Couvreur P, Kante B, Roland M, et al. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 1979;31(5):331-2
  • Gaspar R, Opperdoes FR, Preat V, et al. Drug targeting with polyalkylcyanoacrylate nanoparticles: in vitro activity of primaquine-loaded nanoparticles against intracellular Leishmania donovani. Ann Trop Med Parasitol 1992;86(1):41-9
  • Gaspar R, Preat V, Opperdoes FR, et al. Macrophage activation by polymeric nanoparticles of polyalkylcyanoacrylates: activity against intracellular Leishmania donovani associated with hydrogen peroxide production. Pharm Res 1992;9(6):782-7
  • Paul M, Durand R, Boulard Y, et al. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target 1998;5(6):481-90
  • Fusai T, Deniau M, Durand R, et al. Action of pentamidine-bound nanoparticles against Leishmania on an in vivo model. Parasite 1994;1(4):319-24
  • Fusai T, Boulard Y, Durand R, et al. Ultrastructural changes in parasites induced by nanoparticle-bound pentamidine in a Leishmania major/mouse model. Parasite 1997;4(2):133-9
  • Durand R, Paul M, Rivollet D, et al. Activity of pentamidine-loaded methacrylate nanoparticles against Leishmania infantum in a mouse model. Int J Parasitol 1997;27(11):1361-7
  • Venier-Julienne MC, Vouldoukis I, Monjour L, et al. In vitro study of the anti-leishmanial activity of biodegradable nanoparticles. J Drug Target 1995;3(1):23-9
  • Verma RK, Pandya S, Misra A. Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol 2011;7(1):118-20
  • Italia JL, Kumar MN, Carter KC. Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis. J Biomed Nanotechnol 2012;8(4):695-702
  • Van de Ven H, Paulussen C, Feijens PB, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release 2012;161(3):795-803
  • Van de Ven H, Vermeersch M, Matheeussen A, et al. PLGA nanoparticles loaded with the antileishmanial saponin beta-aescin: factor influence study and in vitro efficacy evaluation. Int J Pharm 2011;420(1):122-32
  • Van de Ven H, Vermeersch M, Vandenbroucke RE, et al. Intracellular drug delivery in Leishmania-infected macrophages: evaluation of saponin-loaded PLGA nanoparticles. J Drug Target 2012;20(2):142-54
  • Roy P, Das S, Bera T, et al. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomedicine 2010;5:1113-21
  • Lala S, Gupta S, Sahu NP, et al. Critical evaluation of the therapeutic potential of bassic acid incorporated in oil-in-water microemulsions and poly-D,L-lactide nanoparticles against experimental leishmaniasis. J Drug Target 2006;14(4):171-9
  • Costa Lima SA, Resende M, Silvestre R, et al. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine (Lond) 2012;7(12):1839-49
  • Dutta M, Bandyopadhyay R, Basu MK. Neoglycosylated liposomes as efficient ligands for the evaluation of specific sugar receptors on macrophages in health and in experimental leishmaniasis. Parasitology 1994;109(Pt 2):139-47
  • Nahar M, Jain NK. Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 2009;26(12):2588-98
  • Sharma S, Kumar P, Jaiswal A, et al. Development and characterization of doxorubicin loaded microparticles against experimental visceral leishmaniasis. J Biomed Nanotechnol 2011;7(1):135-6
  • Ordonez-Gutierrez L, Espada-Fernandez R, Dea-Ayuela MA, et al. In vitro effect of new formulations of amphotericin B on amastigote and promastigote forms of Leishmania infantum. Int J Antimicrob Agents 2007;30(4):325-9
  • Sanchez-Brunete JA, Dea MA, Rama S, et al. Influence of the vehicle on the properties and efficacy of microparticles containing amphotericin B. J Drug Target 2005;13(4):225-33
  • Rodrigues JM Jr, Croft SL, Fessi H, et al. The activity and ultrastructural localization of primaquine-loaded poly (d,l-lactide) nanoparticles in Leishmania donovani infected mice. Trop Med Parasitol 1994;45(3):223-8
  • Rodrigues JM, Fessi H, Bories C, et al. Primaquine-loaded poly(lactide) nanoparticles: physicochemical study and acute tolerance in mice. Int J Pharm 1995;126(1-2):253-60
  • Durand R, Paul M, Rivollet D, et al. Activity of pentamidine-loaded poly (D,L-lactide) nanoparticles against Leishmania infantum in a murine model. Parasite 1997;4(4):331-6
  • Costa Lima S, Rodrigues V, Garrido J, et al. In vitro evaluation of bisnaphthalimidopropyl derivatives loaded into pegylated nanoparticles against Leishmania infantum protozoa. Int J Antimicrob Agents 2012;39(5):424-30
  • Lala S, Nandy AK, Mahato SB, et al. Delivery in vivo of 14-deoxy-11-oxoandrographolide, an antileishmanial agent, by different drug carriers. Indian J Biochem Biophys 2003;40(3):169-74
  • Tyagi R, Lala S, Verma AK, et al. Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. J Drug Target 2005;13(3):161-71
  • Torres-Santos EC, Rodrigues JM Jr, Moreira DL, et al. Improvement of in vitro and in vivo antileishmanial activities of 2', 6'-dihydroxy-4'-methoxychalcone by entrapment in poly(D,L-lactide) nanoparticles. Antimicrob Agents Chemother 1999;43(7):1776-8
  • Cauchetier E, Paul M, Rivollet D, et al. Therapeutic evaluation of free and nanocapsule-encapsulated atovaquone in the treatment of murine visceral leishmaniasis. Ann Trop Med Parasitol 2003;97(3):259-68
  • Heurtault B, Legrand P, Mosqueira V, et al. The antileishmanial properties of surface-modified, primaquine-loaded nanocapsules tested against intramacrophagic Leishmania donovani amastigotes in vitro. Ann Trop Med Parasitol 2001;95(5):529-33
  • Espuelas MS, Legrand P, Loiseau PM, et al. In vitro antileishmanial activity of amphotericin B loaded in poly(epsilon-caprolactone) nanospheres. J Drug Target 2002;10(8):593-9
  • Singh P, Gupta A, Jaiswal A, et al. Design and development of Amphotericin B bearing polycaprolactone microparticles for macrophage targeting. J Biomed Nanotechnol 2011;7(1):50-1
  • Dea-Ayuela MA, Rama-Iniguez S, Sanchez-Brunete JA, et al. Anti-leishmanial activity of a new formulation of amphotericin B. Trop Med Int Health 2004;9(9):981-90
  • Sanchez-Brunete JA, Dea MA, Rama S, et al. Treatment of experimental visceral leishmaniasis with amphotericin B in stable albumin microspheres. Antimicrob Agents Chemother 2004;48(9):3246-52
  • Rama Iniguez S, Dea-Ayuela MA, Sanchez-Brunete JA, et al. Real-time reverse transcription-PCR quantification of cytokine mRNA expression in golden Syrian hamster infected with Leishmania infantum and treated with a new amphotericin B formulation. Antimicrob Agents Chemother 2006;50(4):1195-201
  • Khan W, Kumar N. Drug targeting to macrophages using paromomycin-loaded albumin microspheres for treatment of visceral leishmaniasis: an in vitro evaluation. J Drug Target 2011;19(4):239-50
  • Nahar M, Dubey V, Mishra D, et al. In vitro evaluation of surface functionalized gelatin nanoparticles for macrophage targeting in the therapy of visceral leishmaniasis. J Drug Target 2010;18(2):93-105
  • Asthana S, Jaiswal AK, Gupta PK, et al. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother 2013;57(4):1714-22
  • Kunjachan S, Gupta S, Dwivedi AK, et al. Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. J Microencapsul 2011;28(4):301-10
  • Singodia D, Khare P, Dube A, et al. Development and performance evaluation of alginate-capped amphotericin B lipid nanoconstructs against visceral leishmaniasis. J Biomed Nanotechnol 2011;7(1):123-4
  • Baillie AJ, Coombs GH, Dolan TF, et al. Biodegradable microspheres: polyacryl starch microparticles as a delivery system for the antileishmanial drug, sodium stibogluconate. J Pharm Pharmacol 1987;39(10):832-5
  • Degling L, Stjarnkvist P, Sjoholm I. Interferon-gamma in starch microparticles: nitric oxide-generating activity in vitro and antileishmanial effect in mice. Pharm Res 1993;10(6):783-90
  • Laakso T, Stjarnkvist P, Sjoholm I. Biodegradable microspheres. VI: lysosomal release of covalently bound antiparasitic drugs from starch microparticles. J Pharm Sci 1987;76(2):134-40
  • Medda S, Mukhopadhyay S, Basu MK. Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. J Antimicrob Chemother 1999;44(6):791-4
  • Sarkar S, Mandal S, Sinha J, et al. Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular delivery modes. J Drug Target 2002;10(8):573-8
  • Sinha J, Raay B, Das N, et al. Bacopasaponin C: critical evaluation of anti-leishmanial properties in various delivery modes. Drug Deliv 2002;9(1):55-62
  • Basu MK, Lala S. Macrophage specific drug delivery in experimental leishmaniasis. Curr Mol Med 2004;4(6):681-9
  • Kobets T, Grekov I, Lipoldova M. Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem 2012;19(10):1443-74
  • Kedzierski L, Zhu Y, Handman E. Leishmania vaccines: progress and problems. Parasitology 2006;133(Suppl):S87-112
  • O'Hagan DT, Rahman D, McGee JP, et al. Biodegradable microparticles as controlled release antigen delivery systems. Immunology 1991;73(2):239-42
  • Badiee A, Heravi Shargh V, Khamesipour A, et al. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends. Vaccine 2013;31(5):735-49
  • Kensil CR, Mo AX, Truneh A. Current vaccine adjuvants: an overview of a diverse class. Front Biosci 2004;9:2972-88
  • Tafaghodi M, Eskandari M, Kharazizadeh M, et al. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins. Trop Biomed 2010;27(3):639-50
  • Tafaghodi M, Khamesipour A, Jaafari MR. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN. Parasitol Res 2011;108(5):1265-73
  • Tafaghodi M, Eskandari M, Khamesipour A, et al. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis. Exp Parasitol 2011;129(2):107-14
  • Danesh-Bahreini MA, Shokri J, Samiei A, et al. Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int J Nanomedicine 2011;6:835-42
  • Basu R, Bhaumik S, Basu JM, et al. Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J Immunol 2005;174(11):7160-71
  • Santos DM, Carneiro MW, de Moura TR, et al. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int J Nanomedicine 2012;7:2115-27
  • Ashutosh Sundar S, Goyal N. Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol 2007;56(Pt 2):143-53
  • Denton H, McGregor JC, Coombs GH. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J 2004;381(Pt 2):405-12
  • Kandpal M, Fouce RB, Pal A, et al. Kinetics and molecular characteristics of arginine transport by Leishmania donovani promastigotes. Mol Biochem Parasitol 1995;71(2):193-201
  • Carvalho L, Luque-Ortega JR, Lopez-Martin C, et al. The 8-aminoquinoline analogue sitamaquine causes oxidative stress in Leishmania donovani promastigotes by targeting succinate dehydrogenase. Antimicrob Agents Chemother 2011;55(9):4204-10
  • Basselin M, Denise H, Coombs GH, et al. Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother 2002;46(12):3731-8
  • Zhai L, Chen M, Blom J, et al. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother 1999;43(6):793-803
  • Torres-Santos EC, Sampaio-Santos MI, Buckner FS, et al. Altered sterol profile induced in Leishmania amazonensis by a natural dihydroxymethoxylated chalcone. J Antimicrob Chemother 2009;63(3):469-72
  • Tasdemir D, Kaiser M, Brun R, et al. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 2006;50(4):1352-64
  • Georgopoulou K, Smirlis D, Bisti S, et al. In vitro activity of 10-deacetylbaccatin III against Leishmania donovani promastigotes and intracellular amastigotes. Planta Med 2007;73(10):1081-8
  • Fournet A, Angelo A, Munoz V, et al. Biological and chemical studies of Pera benensis, a Bolivian plant used in folk medicine as a treatment of cutaneous leishmaniasis. J Ethnopharmacol 1992;37(2):159-64
  • Germonprez N, Maes L, Van Puyvelde L, et al. In vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesa balansae and some chemical derivatives. J Med Chem 2005;48(1):32-7
  • Banerjee G, Bhaduri AN, Basu MK. Mannose-coated liposomal hamycin in the treatment of experimental leishmaniasis in hamsters. Biochem Med Metab Biol 1994;53(1):1-7
  • Lala S, Pramanick S, Mukhopadhyay S, et al. Harmine: evaluation of its antileishmanial properties in various vesicular delivery systems. J Drug Target 2004;12(3):165-75
  • Medda S, Jaisankar P, Manna RK, et al. Phospholipid microspheres: a novel delivery mode for targeting antileishmanial agent in experimental leishmaniasis. J Drug Target 2003;11(2):123-8
  • Ordonez-Gutierrez L, Espada-Fernandez R, Dea-Ayuela MA, et al. In vitro effect of new formulations of amphotericin B on amastigote and promastigote forms of Leishmania infantum. Int J Antimicrob Agents 2007;30(4):325-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.