495
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Thermoresponsive polymers as gene and drug delivery vectors: architecture and mechanism of action

, &
Pages 1669-1686 | Published online: 14 Oct 2013

Bibliography

  • Davis ME. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771-82
  • Discher BM, Won Y-Y, Ege DS, et al. Polymersomes: tough vesicles made from diblock copolymers. Science 1999;284:1143-6
  • Cammas S, Suzuki K, Sone C, et al. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release 1997;48:157-64
  • Alexander C. Temperature-and pH-responsive smart polymers for gene delivery. Expert Opin Drug Deliv 2006;3:573-81
  • Bignotti F, Penco M, Sartore L, et al. Synthesis, characterisation and solution behavior of thermo-and pH-responsive polymers bearing L-leucine residues in the side chains. Polymer (Guildf) 2000;41:8247-56
  • Garbern JC, Hoffman AS, Stayton PS. Injectable pH-and temperature-responsive poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules 2010;11:1833-9
  • Okano T, Yamada N, Okuhara M, et al. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 1995;16:297-303
  • Wischerhoff E, Uhlig K, Lankenau A, et al. Controlled cell adhesion on PEG-based switchable surfaces. Angew Chem Int Ed 2008;47:5666-8
  • Martins AM, Alves CM, Kasper FK, et al. Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. J Mater Chem 2010;20:1638-45
  • Garty S, Kimelman-Bleich N, Hayouka Z, et al. Peptide-modified “smart” hydrogels and genetically engineered stem cells for skeletal tissue engineering. Biomacromolecules 2010;11:1516-26
  • Lai J-Y, Hsieh A-C. A gelatin-g-poly (N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Biomaterials 2012;33:2372-87
  • Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 2007;32:962-90
  • Bajpai A, Shukla SK, Bhanu S, et al. Responsive polymers in controlled drug delivery. Prog Polym Sci 2008;33:1088-118
  • Du F-S, Wang Y, Zhang R, et al. Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 2010;6:835-48
  • Liu J, Jiang X, Xu L, et al. Novel reduction-responsive cross-linked polyethylenimine derivatives by click chemistry for nonviral gene delivery. Bioconjug Chem 2010;21:1827-35
  • Grigsby CL, Leong KW. Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J Royal Soc Interface 2010;7:S67-82
  • Shao P, Wang B, Wang Y, et al. The application of thermosensitive nanocarriers in controlled drug delivery. J Nanomater 2011;2011:17
  • Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 2004;29:1173-222
  • Talelli M, Hennink WE. Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine 2011;6:1245-55
  • Pamies R, Zhu K, Kjøniksen A-L, et al. Thermal response of low molecular weight poly-(N-isopropylacrylamide) polymers in aqueous solution. Polym Bull 2009;62:487-502
  • Jochum FD, Theato P. Temperature-and light-responsive smart polymer materials. Chem Soc Rev 2013;42(17):7468-83
  • Schilli CM, Zhang M, Rizzardo E, et al. A new double-responsive block copolymer synthesized via RAFT polymerization: poly (N-isopropylacrylamide)-block-poly (acrylic acid). Macromolecules 2004;37:7861-6
  • Wei H, Cheng SX, Zhang XZ, et al. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Prog Polym Sci 2009;34:893-910
  • Wei H, Zhang XZ, Cheng H, et al. Self-assembled thermo-and pH responsive micelles of poly (10-undecenoic acid-b-N-isopropylacrylamide) for drug delivery. J Control Release 2006;116:266-74
  • Nakayama M, Okano T, Miyazaki T, et al. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release 2006;115:46-56
  • Zhang W, Shi L, Wu K, et al. Thermoresponsive micellization of poly (ethylene glycol)-b-poly (N-isopropylacrylamide) in water. Macromolecules 2005;38:5743-7
  • Bayati S, Zhu K, Trinh LT, et al. Effects of temperature and salt addition on the association behavior of charged amphiphilic diblock copolymers in aqueous solution. J Phys Chem B 2012;116:11386-95
  • Kjøniksen A-L, Zhu K, Pamies R, et al. Temperature-induced formation and contraction of micelle-like aggregates in aqueous solutions of thermoresponsive short-chain copolymers. J Phys Chem B 2008;112:3294-9
  • Chang C, Wei H, Quan CY, et al. Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J Polym Sci A Polymer Chem 2008;46:3048-57
  • Wiradharma N, Zhang Y, Venkataraman S, et al. Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today 2009;4:302-17
  • Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006;112:630-48
  • Yokoyama M, Okano T, Sakurai Y, et al. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991;51:3229-36
  • Licciardi M, Giammona G, Du J, et al. New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems. Polymer (Guildf) 2006;47:2946-55
  • Chung J, Yokoyama M, Yamato M, et al. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly (butylmethacrylate). J Control Release 1999;62:115
  • Yang M, Ding Y, Zhang L, et al. Novel thermosensitive polymeric micelles for docetaxel delivery. J Biomed Mater Res A 2007;81:847-57
  • Liu S, Tong Y, Yang Y. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly (N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly (D, L-lactide-co-glycolide) with varying compositions. Biomaterials 2005;26:5064-74
  • Ge Z, Luo S, Liu S. Syntheses and self-assembly of poly (benzyl ether)-b-poly (N-isopropylacrylamide) dendritic–linear diblock copolymers. J Polym Sci A Polymer Chem 2006;44:1357-71
  • Kimura M, Kato M, Muto T, et al. Temperature-sensitive dendritic hosts: synthesis, characterization, and control of catalytic activity. Macromolecules 2000;33:1117-19
  • Yang Z, Xie J, Zhou W, et al. Temperature sensitivity and drug encapsulation of star-shaped amphiphilic block copolymer based on dendritic poly (ether-amide). J Biomed Mater Res A 2009;89:988-1000
  • Kojima C. Design of stimuli-responsive dendrimers. Expert Opin Drug Deliv 2010;7:307-19
  • Loh XJ, Wu Y-L, Joseph Seow WT, et al. Micellization and phase transition behavior of thermosensitive poly (N-isopropylacrylamide)–poly (-caprolactone)–poly (N-isopropylacrylamide) triblock copolymers. Polymer (Guildf) 2008;49:5084-94
  • Xu F, Li J, Yuan S, et al. Thermo-responsive porous membranes of controllable porous morphology from triblock copolymers of polycaprolactone and poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Biomacromolecules 2007;9:331-9
  • Lo C-L, Lin K-M, Hsiue G-H. Preparation and characterization of intelligent core-shell nanoparticles based on poly (D, L-lactide)-g-poly (N-isopropyl acrylamide-co-methacrylic acid). J Control Release 2005;104:477-88
  • Wei H, Zhang X, Cheng C, et al. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials 2007;28:99
  • Wei H, Chen W-Q, Chang C, et al. Synthesis of star block, thermosensitive poly (L-lactide)-star block-poly (N-isopropylacrylamide-co-N-hydroxymethylacrylamide) copolymers and their self-assembled micelles for controlled release. J Phys Chem C 2008;112:2888-94
  • Wei H, Zhang XZ, Chen WQ, et al. Self-assembled thermosensitive micelles based on poly (L-lactide-star block-N-isopropylacrylamide) for drug delivery. J Biomed Mater Res A 2007;83:980-9
  • Li YY, Zhang XZ, Kim GC, et al. Thermosensitive Y-Shaped Micelles of Poly (oleic acid-Y-N-isopropylacrylamide) for Drug Delivery. Small 2006;2:917-23
  • Nuopponen M, Ojala J, Tenhu H. Aggregation behavior of well defined amphiphilic diblock copolymers with poly (N-isopropylacrylamide) and hydrophobic blocks. Polymer (Guildf) 2004;45:3643-50
  • Topp M, Dijkstra P, Talsma H, et al. Thermosensitive micelle-forming block copolymers of poly (ethylene glycol) and poly (N-isopropylacrylamide). Macromolecules 1997;30:8518-20
  • Iijima M, Nagasaki Y. Synthesis of poly [N-isopropylacrylamide-g-poly (ethylene glycol)] with a reactive group at the poly (ethylene glycol) end and its thermosensitive self-assembling character. J Polym Sci A Polymer Chem 2006;44:1457-69
  • Qin S, Geng Y, Discher DE, et al. Temperature-controlled assembly and release from polymer vesicles of poly (ethylene oxide)-block-poly (N-isopropylacrylamide). Adv Mater 2006;18:2905-9
  • Virtanen J, Holappa S, Lemmetyinen H, et al. Aggregation in aqueous poly (N-isopropylacrylamide)-block-poly (ethylene oxide) solutions studied by fluorescence spectroscopy and light scattering. Macromolecules 2002;35:4763-9
  • Virtanen J, Lemmetyinen H, Tenhu H. Fluorescence and EPR studies on the collapse of poly (N-isopropyl acrylamide)-g-poly (ethylene oxide) in water. Polymer (Guildf) 2001;42:9487-93
  • Qiu X, Wu C. Study of the core-shell nanoparticle formed through the “coil-to-globule” transition of poly (N-isopropylacrylamide) grafted with poly (ethylene oxide). Macromolecules 1997;30:7921-6
  • Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215-23
  • Zhang W, Shi L, Ma R, et al. Micellization of thermo-and pH-responsive triblock copolymer of poly (ethylene glycol)-b-poly (4-vinylpyridine)-b-poly (N-isopropylacrylamide). Macromolecules 2005;38:8850-2
  • You Y-Z, Oupický D. Synthesis of temperature-responsive heterobifunctional block copolymers of poly (ethylene glycol) and poly (N-isopropylacrylamide). Biomacromolecules 2007;8:98-105
  • Lin H-H, Cheng Y-L. In-situ thermoreversible gelation of block and star copolymers of poly (ethylene glycol) and poly (N-isopropylacrylamide) of varying architectures. Macromolecules 2001;34:3710-15
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 2002;82:189-212
  • Alvarez-Lorenzo C, Sosnik A, Concheiro A. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr Drug Targets 2011;12:1112-30
  • Fusco S, Borzacchiello A, Netti P. Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J Bioact Compat Polym 2006;21:149-64
  • Kwon GS, Forrest ML. Amphiphilic block copolymer micelles for nanoscale drug delivery. Drug Dev Res 2006;67:15-22
  • Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 2004;58:409-26
  • Rapoport N. Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery. Colloids Surf B 1999;16:93-111
  • Parmar A, Bahadur A, Kuperkar K, et al. PEO-PPO based star-block copolymer T904 as pH responsive nanocarriers for quercetin: solubilization and release study. Eur Polym J 2012;49:12-21
  • Gonzalez-Lopez J, Alvarez-Lorenzo C, Taboada P, et al. Self-associative behavior and drug-solubilizing ability of poloxamine (tetronic) block copolymers. Langmuir 2008;24:10688-97
  • Rey-Rico A, Silva M, Couceiro J, et al. Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2. Eur Cells Mater 2011;21:317-40
  • Soga O, van Nostrum CF, Hennink WE. Poly (N-(2-hydroxypropyl) methacrylamide mono/di lactate): a new class of biodegradable polymers with tuneable thermosensitivity. Biomacromolecules 2004;5:818-21
  • Soga O, van Nostrum CF, Ramzi A, et al. Physicochemical characterization of degradable thermosensitive polymeric micelles. Langmuir 2004;20:9388-95
  • Soga O, van Nostrum CF, Fens M, et al. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release 2005;103:341-53
  • Canine BF, Hatefi A. Development of recombinant cationic polymers for gene therapy research. Adv Drug Deliv Rev 2010;62:1524-9
  • Chen T-HH, Bae Y, Furgeson DY, et al. Biodegradable hybrid recombinant block copolymers for non-viral gene transfection. Int J Pharm 2012;427:105-12
  • Ribeiro A, Arias FJ, Reguera J, et al. Influence of the amino-acid sequence on the inverse temperature transition of elastin-like polymers. Biophys J 2009;97:312-20
  • Kim W, Thévenot J, Ibarboure E, et al. Self-Assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angew Chem Int Ed 2010;49:4257-60
  • Meyer DE, Kong GA, Dewhirst MW, et al. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 2001;61:1548-54
  • Bidwell GL III, Fokt I, Priebe W, et al. Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem Pharmacol 2007;73:620-31
  • Bidwell GL III, Davis AN, Fokt I, et al. A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Invest New Drugs 2007;25:313-26
  • Dreher MR, Liu W, Michelich CR, et al. Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors. Cancer Res 2007;67:4418-24
  • Furgeson DY, Dreher MR, Chilkoti A. Structural optimization of a “smart” doxorubicin–polypeptide conjugate for thermally targeted delivery to solid tumors. J Control Release 2006;110:362-9
  • Chen Y, Youn P, Furgeson D. Thermo-targeted drug delivery of geldanamycin to hyperthermic tumor margins with diblock elastin-based biopolymers. J Control Release 2011;155:175-83
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2012;64:49-60
  • Li Z, Guan J. Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2011;8:991-1007
  • Aguilar M, Elvira C, Gallardo A, et al. Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis R, Chiellini E, editors., Expertissues E-book (European Institute of Excellence for Tissue Engineering and Regenerative Medicine), Topics in tissue engineering. 2007
  • Jeong B, Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 2002;20:305-11
  • He C, Kim S, Lee D. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189-207
  • Lee JB, Yoon JJ, Lee DS, et al. Photo-crosslinkable, thermo-sensitive and biodegradable Pluronic hydrogels for sustained release of protein. J Biomater Sci Polym Ed 2004;15:1571-83
  • Yuan Xiong X, Chiu Tam K, Huat Gan L. Synthesis and thermally responsive properties of novel pluronic F87/polycaprolactone (PCL) block copolymers with short PCL blocks. J Appl Polym Sci 2006;100:4163-72
  • Xiong X, Tam K, Gan L. Synthesis and thermal responsive properties of P (LA-b-EO-b-PO-b-EO-b-LA) block copolymers with short hydrophobic poly (lactic acid)(PLA) segments. Polymer (Guildf) 2005;46:1841-50
  • Cohn D, Sosnik A, Levy A. Improved reverse thermo-responsive polymeric systems. Biomaterials 2003;24:3707-14
  • Ahn JS, Suh JM, Lee M, et al. Slow eroding biodegradable multiblock poloxamer copolymers. Polym Int 2005;54:842-7
  • Bromberg L. Properties of aqueous solutions and gels of poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide)-g-poly (acrylic acid). J Phys Chem B 1998;102:10736-44
  • Bromberg L. Polyether-modified poly (acrylic acid): synthesis and applications. Ind Eng Chem Res 1998;37:4267-74
  • Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 1999;32:7064-9
  • Jeong B, Bae YH, Lee DS, et al. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388:860-2
  • Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev 2008;37:1473-81
  • Jeong B, Bae YH, Kim SW. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 2000;50:171-7
  • Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Release 2000;63:155-63
  • Chung Y-M, Simmons KL, Gutowska A, et al. Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules 2002;3:511-16
  • Jeong B, Kibbey MR, Birnbaum JC, et al. Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules 2000;33:8317-22
  • Stile RA, Burghardt WR, Healy KE. Synthesis and characterization of injectable poly (N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 1999;32:7370-9
  • Caykara T, Kiper S, Demirel G. Thermosensitive poly (N-isopropylacrylamide-co-acrylamide) hydrogels: synthesis, swelling and interaction with ionic surfactants. Eur Polym J 2006;42:348-55
  • Zhang XZ, Wu DQ, Chu CC. Effect of the crosslinking level on the properties of temperature-sensitive poly (N-isopropylacrylamide) hydrogels. J Polym Sci B Polym Phys 2003;41:582-93
  • Zhang XZ, Yang YY, Chung TS, et al. Preparation and characterization of fast response macroporous poly (N-isopropylacrylamide) hydrogels. Langmuir 2001;17:6094-9
  • Ha DI, Lee SB, Chong MS, et al. Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly (N-isopropylacrylamide) and their drug release behaviors. Macromol Res 2006;14:87-93
  • Ju HK, Kim SY, Kim SJ, et al. pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly (N-isopropylacrylamide). J Appl Polym Sci 2001;83:1128-39
  • Cao Y, Zhang C, Shen W, et al. Poly (N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 2007;120:186-94
  • Liu W, Zhang B, Lu WW, et al. A rapid temperature-responsive sol-gel reversible poly (N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 2004;25:3005-12
  • Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 2011;12:316-28
  • Lee Y, Kataoka K. Delivery of nucleic acid drugs. Adv Polym Sci 2012;249:95-134
  • Gardlík R, Pálffy R, Hodosy J, et al. Vectors and delivery systems in gene therapy. Med Sci Monit 2005;11:121
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003;4:346-58
  • Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 2009;11:671-81
  • Říhová B. Biocompatibility of biomaterials: hemocompatibility, immunocompatiblity and biocompatibility of solid polymeric materials and soluble targetable polymeric carriers. Adv Drug Deliv Rev 1996;21:157-76
  • Říhová B. Biocompatibility and immunocompatibility of water-soluble polymers based on HPMA. Compos Part B Eng 2007;38:386-97
  • Yokoyama M. Gene delivery using temperature-responsive polymeric carriers. Drug Discov Today 2002;7:426-32
  • Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery—past, present, and future. Prog Polym Sci 2007;32:799-837
  • Kurisawa M, Yokoyama M, Okano T. Gene expression control by temperature with thermo-responsive polymeric gene carriers. J Control Release 2000;69:127-37
  • Yokoyama M, Kurisawa M, Okano T. Influential factors on temperature-controlled gene expression using thermoresponsive polymeric gene carriers. J Artif Organs 2001;4:138-45
  • Hinrichs W, Schuurmans-Nieuwenbroek N, Van De Wetering P, et al. Thermosensitive polymers as carriers for DNA delivery. J Control Release 1999;60:249-59
  • Türk M, Dinçer S, Yuluğ IG, et al. In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J Control Release 2004;96:325-40
  • Zintchenko A, Ogris M, Wagner E. Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjug Chem 2006;17:766-72
  • Schwerdt A, Zintchenko A, Concia M, et al. Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum Gene Ther 2008;19:1283-92
  • Lavigne MD, Pennadam SS, Ellis J, et al. Enhanced gene expression through temperature profile-induced variations in molecular architecture of thermoresponsive polymer vectors. J Gene Med 2007;9:44-54
  • Sun S, Liu W, Cheng N, et al. A thermoresponsive chitosan-NIPAAm/vinyl laurate copolymer vector for gene transfection. Bioconjug Chem 2005;16:972-80
  • Mao Z, Ma L, Yan J, et al. The gene transfection efficiency of thermoresponsive N, N, N-trimethyl chitosan chloride-g-poly (N-isopropylacrylamide) copolymer. Biomaterials 2007;28:4488-500
  • Calejo MT, Cardoso AMS, Kjøniksen A-L, et al. Temperature-responsive cationic block copolymers as nanocarriers for gene delivery. Int J Pharm 2013;448:105-14
  • Choi SH, Lee SH, Park TG. Temperature-sensitive pluronic/poly (ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules 2006;7:1864-70
  • Lee SH, Choi SH, Kim SH, et al. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J Control Release 2008;125:25-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.