473
Views
88
CrossRef citations to date
0
Altmetric
Reviews

Poly(amidoamine) dendrimer complexes as a platform for gene delivery

, PhD, , PhD & , DSci, PhD
Pages 1687-1698 | Published online: 30 Oct 2013

Bibliography

  • Pearson S, Jia H, Kandachi K. China approves first gene therapy. Nat Biotechnol 2004;22:3-4
  • Ginn SL, Alexander IE, Edelstein ML, et al. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med 2013;15:65-77
  • Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013;525:162-9
  • Vannucci L, Lai M, Chiuppesi F, et al. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013;36:1-22
  • Knight S, Collins M, Takeuchi Y. Insertional mutagenesis by retroviral vectors: current concepts and methods of analysis. Curr Gene Ther 2013;13:211-27
  • Kim B, Rutka J, Chan W. Nanomedicine. New Engl J Med 2010;363:2434-43
  • Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 2010;15:171-85
  • Liu X, Rocchi P, Peng L. Dendrimers as non-viral vectors for siRNA delivery. New J Chem 2012;36:256-63
  • Duncan R, Vicent M. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Del Rev 2013;65:60-70
  • Tomalia D, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polymer J 1984;17:117-32
  • Newkome G, Yao Z, Baker G, et al. Cascade molecules: 2. Synthesis and characterization of a benzene[9]3-arborol. J Am Chem Soc 1986;108:849-50
  • Fischer M, Vogtle F. Dendrimers: from design to application – a progress report. Angew Chem Int Ed Engl 1999;38:884-905
  • Svenson S, Tomalia D. Dendrimers in biomedical applications – reflections on the field. Adv Drug Del Rev 2005;57:2106-29
  • Cheng Y. editor. Dendrimer-based drug delivery systems. Wiley, Hoboken, New-Jersey; 2012
  • Campagna S, Ceroni P, Puntoriero F. Designing dendrimers. Wiley, Hoboken, New-Jersey; 2012
  • Tomalia D, Christensen J, Boas U. Dendrimers, dendrons and dendritic polymers: discovery, applications, the future. Cambridge University Press, New York; 2012
  • Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 1997;4:823-32
  • Bielinska AU, Kukowska-Latallo JF, Baker JR Jr. The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim Biophys Acta 1997;1353:180-90
  • Chen W, Turro N, Tomalia D. Using Ethidium Bromide to Probe the Interaction between DNA and Dendrimers. Langmuir 2000;16:15-19
  • Resnier P, Montier T, Mathieu V, et al. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 2013;34:6429-43
  • Ottaviani MF, Furini F, Casini A, et al. Formation of supramolecular structures between DNA and starburst dendrimers studied by EPR, CD, UV, and melting Profiles. Macromol 2000;33:7842-51
  • Haensler J, Szoka FC. Polyamidoamine Cascade Polymers Mediate Efficient Transfection of Cells in Culture. Bioconj Chem 1993;1093:372-9
  • Kukowska-Latallo JF, Bielinska AU, Johnson J, et al. Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc Natl Acad Sci 1993;93:4897-902
  • Perumal OP, Inapagolla R, Kannan S, et al. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 2008;29:3469-76
  • Sonawane ND, Szoka FC Jr, Verkman AS. Chloride Accumulation and Swelling in Endosomes Enhances DNA Transfer by Polyamine-DNA Polyplexes. J Biol Chem 2003;278:44826-31
  • Qin LH, Pahud DR, Ding YZ, et al. Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers. Hum Gene Ther 1998;9:553-60
  • Zinselmeyer BH, Mackay SP, Schatzlein AG, et al. The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res 2002;19:960-7
  • Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 1999;65:133-48
  • Domanski DM, Klajnert B, Bryszewska M. Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry 2004;63:189-91
  • Klajnert B, Pikala S, Bryszewska M. Haemolytic activity of polyamidoamine dendrimers and the protective role of human serum albumin. Proc R Soc A 2010;466:1527-34
  • Pedziwiatr-Werbicka E, Fuentes E, Dzmitruk V, et al. Novel ‘Si-C' carbosilane dendrimers as carriers for anti-HIV nucleic acids: studies on complexation and interaction with blood cells. Coll Surf B 2013;109:183-9
  • Ziemba B, Halets I, Shcharbin D, et al. Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. J Biomed Mater Res A 2012;100:2870-80
  • Tang MX, Redemann CT, Szoka FC Jr. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 1996;7:703-14
  • Turunen MP, Hiltunen MO, Ruponen M, et al. Efficient adventitial gene delivery to rabbit carotid artery with cationic polymer-plasmid complexes. Gene Ther 1999;6:6-11
  • Shakhbazau A, Isayenka I, Kartel N, et al. Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity. Int J Pharm 2010;383:228-35
  • Halets I, Shcharbin D, Klajnert B, et al. Contribution of hydrophobicity, DNA and proteins to the cytotoxicity of cationic PAMAM dendrimers. Int J Pharm 2013; doi: 10.1016/j.ijpharm.2013.06.061
  • Braun CS, Vetro JA, Tomalia DA, et al. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci 2005;94:423-36
  • Zhang XQ, Wang XL, Huang S, et al. In vitro gene delivery using polyamidoamine dendrimers with a trimesyl core. Biomacromology 2005;6:341-50
  • Arima H, Kihara F, Hirayama F, et al. Enhancement of gene expression by polyamidoamine dendrimer conjugates with alpha-, beta-, and gamma-cyclodextrins. Bioconjug Chem 2001;12:476-84
  • Kim HA, Lee BW, Kang D, et al. Delivery of hypoxia-inducible VEGF gene to rat islets using polyethylenimine. J Drug Target 2009;17:1-9
  • Hudde T, Rayner SA, Comer RM, et al. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther 1999;6:939-43
  • Dufes C, Keith WN, Bilsland A, et al. Synthetic Anticancer Gene Medicine Exploits Intrinsic Antitumor Activity of Cationic Vector to Cure Established Tumors. Cancer Res 2005;65:8079-84
  • Nakanishi H, Mazda O, Satoh E, et al. Nonviral genetic transfer of Fas ligand induced significant growth suppression and apoptotic tumor cell death in prostate cancer in vivo. Gene Ther 2003;10:434-42
  • Maruyama-Tabata H, Harada Y, Matsumura T, et al. Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimers. Gene Ther 2000;7:53-60
  • Harada Y, Iwai M, Tanaka S, et al. Highly efficient suicide gene expression in hepatocellular carcinoma cells by Epstein-Barr virus-based plasmid vectors combined with polyamidoamine dendrimers. Cancer Gene Ther 2000;7:27-36
  • Tanaka S, Iwai M, Harada Y, et al. Targeted killing of carcinoembryonic antigen (CEA)-producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein-Barr virus (EBV)-based plasmid vector carrying the CEA promoter. Gene Ther 2000;7:1241-9
  • Balicki D, Reisfeld RA, Pertl U, et al. Histone H2A-mediated transient cytokine gene delivery induces efficient antitumor responses in murine neuroblastoma. Proc Natl Ac Sci 2000;97:2111500-4
  • Vincent L, Varet J, Pille JY, et al. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int J Cancer 2003;105:419-29
  • Santos JL, Oramas E, Pêgo AP, et al. Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. J Control Rel 2009;134:141-8
  • Pandita D, Santos JL, Rodrigues J, et al. Gene delivery into mesenchymal stem cells: a biomimetic approach using RGD nanoclusters based on poly(amidoamine) dendrimers. Biomacromology 2011;12:472-81
  • Santos JL, Pandita D, Rodrigues J, et al. Receptor-mediated gene delivery using PAMAM dendrimers conjugated with peptides recognized by mesenchymal stem cells. Mol Pharm 2010;7:763-74
  • Ohashi S, Kubo T, Ikeda T, et al. Cationic polymer-mediated genetic transduction into cultured human chondrosarcoma-derived HCS-2/8 cells. J Orthop Sci 2001;6:75-81
  • Kim HA, Lee S, Park JH, et al. Enhanced protection of Ins-1 beta cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. J Drug Target 2009;17:242-8
  • Shakhbazau A, Shcharbin D, Goncharova N, et al. Neurons and Stromal Stem Cells as Targets for Polycation-Mediated Transfection. Bull Exp Biol Med 2011;151:126-9
  • Shakhbazau A, Shcharbin D, Isayenka I, et al. Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells. Mol Biol Rep 2010;37:2003-8
  • Shakhbazau A, Shcharbin D, Bryszewska M, et al. Non-viral engineering of skin precursor-derived Schwann cells for enhanced NT-3 production in adherent and microcarrier culture. Curr Med Chem 2012;19:5572-9
  • Shakhbazau A, Shcharbin D, Seviaryn I, et al. Dendrimer-driven neurotrophin expression differs in temporal patterns between rodent and human stem cells. Mol Pharm 2012;9:1521-8
  • Shakhbazau A, Shcharbin D, Petyovka N, et al. Non-virally modified human mesenchymal stem cells produce ciliary neurotrophic factor in biodegradable fibrin-based 3D scaffolds. J Pharm Sci 2012;101:1546-54
  • Liu H, Wang H, Yang W, et al. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc 2012;134:17680-7
  • Kim ID, Shin JH, Kim SW, et al. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther 2012;20:829-39
  • Zhao H, Li J, Xi F, et al. Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett 2004;563:241-5
  • Wang W, Guo Z, Chen Y, et al. Influence of generation 2-5 of PAMAM dendrimer on the inhibition of Tat peptide/TAR RNA binding in HIV-1 transcription. Chem Biol Drug Des 2006;68:314-18
  • Pan B, Cui D, Xu P, et al. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology 2009;20:125101
  • Pan B, Cui D, Sheng Y, et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 2007;67:8156-63
  • Patil ML, Zhang M, Taratula O, et al. Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromology 2009;10:258-66
  • Lee JH, Lim YB, Choi MU, et al. Quaternized Polyamidoamine Dendrimers as Novel Gene Delivery System: relationship between Degree of Quaternization and Their Influences. Bull Korean Chem Soc 2003;24:1637-40
  • Han M, Lv Q, Tang XJ, et al. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex. J Control Release 2012;163:136-44
  • Yu T, Liu X, Bolcato-Bellemin AL, et al. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed Engl 2012;51:8478-84
  • Liu X, Liu C, Catapano C, et al. Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics. Biotechnol Adv 2013; doi: 10.1016/j.biotechadv.2013.08.001
  • Reebye V, Saetrom P, Mintz P, et al. A novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology 2013; doi: 10.1002/hep.26669
  • Praetorius M, Pfannenstiel S, Klingmann C, et al. Expression patterns of non-viral transfection with GFP in the organ of Corti in vitro and in vivo. Gene therapy of the inner ear with non-viral vectors. Universitats Hals Nasen Ohren Klinik J 2008;56:524-9
  • Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromology 2002;35:3456-62
  • Huang R, Qu Y, Ke W, et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 2007;21:1117-25
  • Qi R, Gao Y, Tang Y, et al. PEG- conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS J 2009;11:395-405
  • Patil ML, Zhang M, Minko T. Multifunctional triblock Nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 2011;5:1877-87
  • Huang S, Li J, Han L, et al. Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 2011;32:6832-8
  • Kono K, Akiyama H, Takahashi T, et al. Transfection activity of polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery. Bioconjug Chem 2005;16:208-14
  • Choi JS, Nam K, Park JY, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release 2004;99:445-56
  • Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 2013; doi: 10.1016/j.addr.2013.05.001
  • Tsutsumi T, Hirayama F, Uekama K, et al. Evaluation of polyamidoamine dendrimer/alpha-cyclodextrin conjugate (generation 3, G3) as a novel carrier for small interfering RNA (siRNA). J Control Release 2007;119:349-59
  • Zhang X, Intra J, Salem AK. Conjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery. Bioconjug Chem 2007;18:2068-76
  • Patil ML, Zhang M, Betigeri S, et al. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem 2008;19:1396-403
  • Lee JH, Lim YB, Choi JS, et al. Polyplexes assembled with internally quaternized PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjug Chem 2003;14:1214-21
  • Shieh MJ, Peng CL, Lou PJ, et al. Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates. J Control Release 2008;129:200-6
  • Zhu K, Guo C, Xia Y, et al. Transplantation of novel vascular endothelial growth factor gene delivery system manipulated skeletal myoblasts promote myocardial repair. Int J Cardiol 2013; doi: 10.1016/j.ijcard.2013.03.041
  • Hayashi Y, Higashi T, Motoyama K, et al. Design and evaluation of polyamidoamine dendrimer conjugate with PEG, α-cyclodextrin and lactose as a novel hepatocyte-selective gene carrier in vitro and in vivo. J Drug Target 2013;21:487-96
  • Li G, Hu Z, Yin H, et al. A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for "smart" small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells. Int J Nanomed 2013;8:1293-306
  • Yin Z, Liu N, Ma M, et al. A novel EGFR-targeted gene delivery system based on complexes self-assembled by EGF, DNA, and activated PAMAM dendrimers. Int J Nanomed 2012;7:4625-35
  • Kono K, Ikeda R, Tsukamoto K, et al. Polyamidoamine dendron-bearing lipids as a nonviral vector: influence of dendron generation. Bioconjug Chem 2012;23:871-9
  • Aydin Z, Akbas F, Senel M, et al. Evaluation of Jeffamine®-cored PAMAM dendrimers as an efficient in vitro gene delivery system. J Biomed Mater Res A 2012;100:2623-8
  • Zhang Y, Zhou C, Kwak KJ, et al. Efficient siRNA delivery using a polyamidoamine dendrimer with a modified pentaerythritol core. Pharm Res 2012;29:1627-36
  • Liu X, Liu C, Laurini E, et al. Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Mol Pharm 2012;9:470-81
  • Pavan GM, Monteagudo S, Guerra J, et al. Role of generation, architecture, pH and ionic strength on successful siRNA delivery and transfection by hybrid PPV-PAMAM dendrimers. Curr Med Chem 2012;19:4929-41
  • Shcharbina N, Shcharbin D, Bryszewska M. Nanomaterials in stroke treatment: perspectives. Stroke 2013;44:2351-5
  • Jain K, Kesharwani P, Gupta U, et al. Dendrimer toxicity: let's meet the challenge. Int J Pharm 2010;394:122-42
  • Jensen LB, Griger J, Naeye B, et al. Comparison of polymeric siRNA nanocarriers in a murine LPS-activated macrophage cell line: gene silencing, toxicity and off-target gene expression. Pharm Res 2012;29:669-82
  • Shcharbin D, Pedziwiatr E, Blasiak J, et al. How to study dendriplexes II: transfection and cytotoxicity. J Control Release 2010;141:110-27
  • Gebhart CL, Kabanov AV. Evaluation of polyplexes as gene transfer agents. J Control Release 2001;73:401-16
  • Usme-Ciro JA, Campillo-Pedroza N, Almazán F, et al. Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs. Virol J 2013;10:185
  • Mignani S, El Kazzouli S, Bousmina M, et al. Dendrimer space concept for innovative nanomedicine: a futuristic vision for medicinal chemistry. Prog Polym Sci 2013;38:993-1008
  • Pezzoli D, Chiesa R, De Nardo L, et al. We still have a long way to go to effectively deliver genes!. J Appl Biomater Function Mater 2012;10:82-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.