662
Views
24
CrossRef citations to date
0
Altmetric
Reviews

State of the art and future directions in nanomedicine for tuberculosis

, PhD, , PhD, , PhD, , PhD, , PhD, , PhD & , MSc show all
Pages 1725-1734 | Published online: 08 Oct 2013

Bibliography

  • World Health Organization. Global tuberculosis report 2012 (WHO/HTM/TB/2012.6). Available from: http://www.who.int/tb/publications/global_report/en/ [Accessed 12 September 2013]
  • Crubezy E, Ludes B, Poveda J, et al. Identification of mycobacterium DNA in an Egyptian Pott's disease of 5 400 years old. C R Acad Sci Paris, Sciences de la vie/Life Sciences 1998;321:941-51
  • Donoghue HD, Lee OY-C, Minnikin DE, et al. Tuberculosis in Dr Granville's mummy: a molecular re-examination of the earliest known Egyptian mummy to be scientifically examined and given a medical diagnosis. Proc Royal Soc B Biol Sci 2010;277:51-6
  • Koch R. Die Atiologie der Tuberkulose. Berliner Kliniscben Wocbenschift 1882;15:221-30
  • McCarthy OR. The key to the sanatoria. J R Soc Med 2001;94:413-17
  • Shah NS, Richardson J, Moodley P, et al. Increasing drug resistance in extensively drug-resistant tuberculosis, South Africa. Emerg Infect Dis 2011;17(3):510-13
  • Klopper M, Warren RM, Hayes C, et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis 2013;19:449-54
  • Calver AD, Falmer AA, Murray M, et al. Emergence of increased resistance and extensively drug-resistant tuberculosis despite treatment adherence, South Africa. Emerg Infect Dis 2010;16(2):264-71
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347-60
  • Wang R, Billone PS, Mullett WM. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013;article ID 629681; 12 pages
  • Bhatt A, Fujiwara N, Bhatt K, et al. Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 2007;104(12):5157-62
  • Russell DG, Cardona P, Kim M, et al. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 2009;10:943-8
  • Peyron P, Vaubourgeix J, Poquet Y, et al. Foamy macrophages from tuberculous patients granulomas constitute a nutrient-rich reservoir for M.tuberculosis persistence. PLoS Pathog 2008;4:e1000204
  • Cardona PJ, Llatjos R, Gordillo S, et al. Evolution of granulomas in lungs of mice infected aerogenically with mycobacterium tuberculosis. Scand J Immunol 2000;52:156-63
  • Barry CE III, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev 2009;7:845-55
  • Korf J, Stoltz A, Verschoor JA, et al. The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol 2005;35:890-900
  • Dubnau E, Chan J, Raynaud C, et al. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 2000;36:630-7
  • Glickman MS, Cox JS, Jacobs WR. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 2000;5(4):717-27
  • Ojha AK, Baughn AD, Sambandan D, et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 2008;69:164-74
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284(5418):1318-22
  • Nickel JC, Ruseska I, Wright JB, Costerton JW. Tobramycin resistance of Pseudomonas-Aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 1985;27(4):619-24
  • Sambandan D, Dao DN, Weinrick BC, et al. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. MBio 2013;4(3):e00222-13
  • Giacomini E, Iona E, Ferroni L, et al. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 2001;166(12):7033-41
  • Gupta D, Sharma S, Singhal J, et al. Suppression of tlr2-induced il-12, reactive oxygen species, and inducible nitric oxide synthase expression by Mycobacterium tuberculosis antigens expressed inside macrophages during the course of infection. J Immunol 2010;184(10):5444-55
  • Kusner DJ. Mechanisms of mycobacterial persistence in tuberculosis. Clin Immunol 2005;114(3):239-47
  • Briken V, Porcelli SA, Besra GS, Kremer L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 2004;53(2):391-403
  • Stop TB Initiative (World Health Organization). Treatment of tuberculosis: guidelines. 2010. Available from: http://whqlibdoc.who.int/publications/2010/9789241547833_eng.pdf [Accessed 12 September 2013]
  • Iseman M. Tuberculosis therapy: past, present and future. Eur Respir J 2002;20(36 Suppl):87S-94s
  • Finberg R, Guharoy R. Clinical approach to treatment of mycobacterial infections, in clinical use of anti-infective agents. Springer; New York: 2012. p. 103-4
  • South Africa Department of Health. Management of drug resistant tuberculosis-policy guidelines 2011. Available from: http://www.doh.gov.za/docs/policy/2012/TBpolicy.pdf [Accessed 12 September 2013]
  • Udwadia ZF. MDR, XDR, TDR tuberculosis: ominous progression. Thorax 2012;67(4):286-8
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23(1–3):3-25
  • Mariappan TT, Singh S, Pandey R, Khuller GK. Determination of absolute bioavailability of rifampicin by varying the mode of intravenous administration and the time of sampling. Clin Res Regul Aff 2005;22(3-4):119-28
  • Sharma A, Pandey R, Sharma S, Khuller GK. Chemotherapeutic efficacy of poly (dl-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int J Antimicrob Agents 2004;24(6):599-604
  • Rifampin. Tuberculosis, 2008;88(2):151-4
  • Peloquin CA, Namdar R, Dodge AA, Nix DE. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuberc Lung Dis 1999;3(8):703-10
  • Auclair B, Nix DE, Adam RD, et al. Pharmacokinetics of ethionamide administered under fasting conditions or with orange juice, food, or antacids. Antimicrob Agents Chemother 2001;45(3):810-14
  • Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis Counterpoint. Int J Tuberc Lung Dis 1998;2(1):10-15
  • Peloquin CA. Pharmacokinetic mismatch of tuberculosis drugs. Antimicrob Agents Chemother 2012;56(3):1666
  • Ziglam HM, Baldwin DR, Daniels I, et al. Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 2002;50(6):1011-15
  • Kingsley J, Dou H, Morehead J, et al. Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 2006;1(3):340-50
  • Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 2008;5(6):703-24
  • Chono S, Tanino T, Seki T, Morimoto K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol 2007;59(1):75-80
  • Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 2008;127(1):50-8
  • Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 2006;14(8):546-56
  • Clemens DL, Lee B-Y, Xue M, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 2012;56(5):2535-45
  • Schwartz Y, Dushkin M, Vavilin V, et al. Novel conjugate of moxifloxacin and carboxymethylated glucan with enhanced activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2006;50(6):1982-8
  • Greco E, Quintiliani G, Santucci MB, et al. Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 2012;109(21):E1360-8
  • Dube A, Reynolds JL, Law W-C, et al. Multimodal nanoparticles for targeted drug delivery and immunotherapy in Tuberculosis. 7th International AIDS Society Conference; Kuala Lumpur, Malaysia; 2013. Available from: http://pag.ias2013.org/Abstracts.aspx?AID=1088 [Accessed 12 September 2013]
  • Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine 2013;9(6):742-57
  • Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 2005;172(12):1487-90
  • Pandey R, Zahoor A, Sharma S, Khuller GK. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis 2003;83(6):373-8
  • Ahmad Z, Pandey R, Sharma S, Khuller GK. Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int J Antimicrob Agents 2006;27(5):409-16
  • Ahmad Z, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 2005;26(4):298-303
  • Semete B, Kalombo L, Katata L, et al. Potential of improving the treatment of tuberculosis through nanomedicine. Mol Crystals Liquid Crystals 2012;556(1):317-30
  • Booysen LL, Kalombo L, Brooks E, et al. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int J Pharm 2013;444(1–2):10-17
  • Semete B, Booysen LIJ, Kalombo L, et al. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 2010;249(2):158-65
  • Pandey R, Khuller G. Antitubercular inhaled therapy: opportunities, progress and challenges. J Antimicrob Chemother 2005;55(4):430-5
  • Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother 2004;54(4):761-6
  • Sung J, Padilla D, Garcia-Contreras L, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res 2009;26(8):1847-55
  • Muttil P, Wang C, Hickey A. Inhaled drug delivery for tuberculosis therapy. Pharm Res 2009;26(11):2401-16
  • Eldar-Boock A, Miller K, Sanchis J, et al. Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials 2011;32(15):3862-74
  • Cocero MJ, Martín Á, Mattea F, Varona S. Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 2009;47(3):546-55
  • Naylor A, Lewis AL, Illum L. Supercritical fluid-mediated methods to encapsulate drugs: recent advances and new opportunities. Ther Deliv 2011;2(12):1551-65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.