1,737
Views
249
CrossRef citations to date
0
Altmetric
Reviews

Skin permeabilization for transdermal drug delivery: recent advances and future prospects

, &

Bibliography

  • Walter MNM, Wright KT, Fuller HR, et al. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 2010;316(7):1271-81
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26(11):1261-8
  • Andrews SN, Jeong E, Prausnitz MR. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res 2012;30(4):1099-109
  • Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006;58(1):68-89
  • Sokolowski CJ, Giovannitti JA Jr, Boynes SG. Needle phobia: etiology, adverse consequences, and patient management. Dent Clin North Am 2010;54(4):731-44
  • Nir Y, Paz A, Sabo E, et al. Fear of injections in young adults: prevalence and associations. Am J Trop Med Hyg 2003;68(3):341-4
  • Dahlan A, Alpar HO, Stickings P, et al. Transcutaneous immunisation assisted by low-frequency ultrasound. Int J Pharm 2009;368(1):123-8
  • Kretsos K, Kasting GB. A geometrical model of dermal capillary clearance. Math Biosci 2007;208(2):430-53
  • Tezel A, Paliwal S, Shen Z, et al. Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine 2005;23(29):3800-7.
  • Miller MA, Pisani E. The cost of unsafe injections. Bull World Health Organ 1999;77(10):808-11
  • Moore TL. Seventeen-point dermal ultrasound scoring system–a reliable measure of skin thickness in patients with systemic sclerosis. Rheumatology 2003;42(12):1559-63
  • McGrath JA, Eady RAJ, Pope FM. Anatomy and organization of human skin. In: Burns T, Breathnach S, Cox N, Griffiths C, editors, Rook's textbook of dermatology. Blackwell Publishing, Inc., Hoboken, NJ; 2008. p. 45-128
  • Kirkpatrick BL, Ricketts VE, Reeves DS, et al. Needlestick injuries among medical students. J Hosp Infect 1993;23(4):315-17
  • Ding Z, van Riet E, Jiskoot W, et al. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release 2010;148(3):266-82
  • Rim JE, Pinsky PM, van Osdol WW. Using the method of homogenization to calculate the effective diffusivity of the stratum corneum with permeable corneocytes. J Biomech 2008;41(4):788-96
  • Polat BE, Hart D, Langer R, et al. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 2011;152(3):330-48
  • Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 2009;1788(4):892-910
  • Brotchie A, Grieser F, Ashokkumar M. Characterization of acoustic cavitation bubbles in different sound fields. J Phys Chem B 2010;114(34):11010-16
  • Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 2004;56(5):675-711
  • Madison KC. Barrier function of the skin: ‘La Raison d'Être’ of the epidermis. J Investig Dermatol 2003;121(2):231-41
  • Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv 2010;7(12):1415-32
  • Liu H-L, Hsieh C-M. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation. Ultrason Sonochem 2009;16(3):431-8
  • Gambichler T, Boms S, Stucker M, et al. Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison. J Eur Acad Dermatol Venerol 2006;20(7):791-5
  • Ng KW, Pearton M, Coulman S, et al. Development of an ex vivo human skin model for intradermal vaccination: tissue viability and Langerhans cell behaviour. Vaccine 2009;27(43):5948-55
  • Ashokkumar M, Lee J, Iida Y, et al. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. ChemPhysChem 2010;11(8):1680-4
  • Scarponi C, Nasorri F, Pavani F, et al. Low-frequency low-intensity ultrasounds do not influence the survival and immune functions of cultured keratinocytes and dendritic cells. J Biomed Biotechnol 2009;2009(1):1-13
  • Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv 2010;7(12):1415-32
  • Tezel A, Sens A, Tuchscherer J, et al. Synergistic effect of low-frequency ultrasound and surfactants on skin permeability. J Pharm Sci 2002;91(1):91-100
  • Kushner J, Kim D, So PTC, et al. Dual-channel two-photon microscopy study of transdermal transport in skin treated with low-frequency ultrasound and a chemical enhancer. J Investig Dermatol 2007;127:2832-46
  • Kushner J, Blankschtein D, Langer R. Evaluation of hydrophilic permeant transport parameters in the localized and non-localized transport regions of skin treated simultaneously with low-frequency ultrasound and sodium lauryl sulfate. J Pharm Sci 2007;97(2):906-18
  • Polat BE, Figueroa PL, Blankschtein D, et al. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate. J Pharm Sci 2010;100(2):512-29
  • Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 2008;60(10):1218-23
  • Lopez RFV, Seto JE, Blankschtein D, et al. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 2011;32(3):933-41
  • Schoellhammer CM, Polat BE, Mendenhall J, et al. Rapid skin permeabilization by the simultaneous application of dual-frequency, high-intensity ultrasound. J Control Release 2012;163(2):154-60
  • Sunny Y, Bawiec CR, Nguyen AT, et al. Optimization of un-tethered, low voltage, 20-100 kHz flexural transducers for biomedical ultrasonics applications. Ultrasonics 2012;52(7):943-8
  • Bawiec CR, Sunny Y, Nguyen AT, et al. Finite element static displacement optimization of 20–100kHz flexural transducers for fully portable ultrasound applicator. Ultrasonics 2012;53(2):511-17
  • Park J-H, Choi S-O, Seo S, et al. A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm 2010;76(2):282-9
  • Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther 2009;11(6):329-37
  • Zhu Q, Zarnitsyn VG, Ye L, et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci 2009;106(19):7968-73
  • Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 2011;32(11):3134-40
  • Moga KA, Bickford LR, Geil RD, et al. Rapidly–dissolvable microneedle patches via a highly scalable and reproducible soft lithography approach. Adv Mater 2013;25(36):5060-6
  • Kim JD, Kim M, Yang H, et al. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release 2013;170(3):430-6
  • Bal S, Kruithof AC, Liebl H, et al. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy. Laser Phys Lett 2010;7(3):242-6
  • Kalluri H, Banga AK. Formation and closure of microchannels in skin following microporation. Pharm Res 2010;28(1):82-94
  • Banks SL, Paudel KS, Brogden NK, et al. Diclofenac enables prolonged delivery of naltrexone through microneedle-treated skin. Pharm Res 2011;28(5):1211-19
  • Brogden NK, Banks SL, Crofford LJ, et al. Diclofenac enables unprecedented week-long microneedle-enhanced delivery of a skin impermeable medication in humans. Pharm Res 2013;30(8):1947-55
  • Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res 2007;24(7):1369-80
  • Cevc G, Vierl U. Nanotechnology and the transdermal route. J Control Release 2010;141(3):277-99
  • Kigasawa K, Kajimoto K, Nakamura T, et al. Noninvasive and efficient transdermal delivery of CpG-oligodeoxynucleotide for cancer immunotherapy. J Control Release 2011;150(3):256-65
  • Herr NR, Kile BM, Carelli RM, et al. Electroosmotic flow and its contribution to iontophoretic delivery. Anal Chem 2008;80(22):8635-41
  • Dubey S, Kalia YN. Non-invasive iontophoretic delivery of enzymatically active ribonuclease A (13.6 kDa) across intact porcine and human skins. J Control Release 2010;145(3):203-9
  • Sammeta SM, Vaka SRK, Murthy SN. Transcutaneous electroporation mediated delivery of doxepin-HPCD complex: a sustained release approach for treatment of postherpetic neuralgia. J Control Release 2010;142(3):361-7
  • Eriksson F, Tötterman T, Maltais A-K, et al. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013;31(37):3843-8
  • Denet A-R, Vanbever R, Préat V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 2004;56(5):659-74
  • Zorec B, Becker S, Reberšek M, et al. Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses. Int J Pharm 2013;457(1):214-23
  • Pliquett UF, Gusbeth CA, Weaver JC. Non-linearity of molecular transport through human skin due to electric stimulus. J Control Release 2000;68(3):373-86
  • Kigasawa K, Kajimoto K, Hama S, et al. Noninvasive delivery of siRNA into the epidermis by iontophoresis using an atopic dermatitis-like model rat. Int J Pharm 2010;383(1):157-60
  • Ching CT-S, Sun T-P, Huang W-T, et al. A circuit design of a low-cost, portable and programmable electroporation device for biomedical applications. Sensors Actuators B Chem 2012;166:292-300
  • Livingston BD, Little SF, Luxembourg A, et al. Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques. Vaccine 2010;28(4):1056-61
  • Singh ND, Banga AK. Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles. J Drug Target 2013;21(4):354-66
  • Pawar KR, Smith F, Kolli CS, et al. Effect of lipophilicity on microneedle-mediated iontophoretic transdermal delivery across human skin in vitro. J Pharm Sci 2013;102(10):3784-91
  • Kumar V, Banga AK. Modulated iontophoretic delivery of small and large molecules through microchannels. Int J Pharm 2012;434(1):106-14
  • Yan K, Todo H, Sugibayashi K. Transdermal drug delivery by in-skin electroporation using a microneedle array. Int J Pharm 2010;397(1):77-83
  • Garland MJ, Salvador EC, Migalska K, et al. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery. J Control Release 2012;159(1):52-9
  • Han T, Das DB. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J Pharm Sci 2013;102(10):3614-22
  • Yoon J, Park D, Son T, et al. A physical method to enhance transdermal delivery of a tissue optical clearing agent: combination of microneedling and sonophoresis. Lasers Surg Med 2010;42(5):412-17
  • Chen B, Wei J, Iliescu C. Sonophoretic enhanced microneedles array (SEMA)–improving the efficiency of transdermal drug delivery. Sensors Actuators B Chem 2010;145(1):54-60
  • Hikima T, Ohsumi S, Shirouzu K, et al. Mechanisms of synergistic skin penetration by sonophoresis and iontophoresis. Biol Pharm Bull 2009;32:905-9
  • Katikaneni S, Li G, Badkar A, et al. Transdermal delivery of a approximately 13 kDa protein–an in vivocomparison of physical enhancement methods. J Drug Target 2010;18(2):141-7
  • Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science 1995;269(5225):850-3
  • Peters EE, Ameri M, Wang X, et al. Erythropoietin-coated ZP-microneedle transdermal system: preclinical formulation, stability, and delivery. Pharm Res 2012;29(6):1618-26
  • Saurer EM, Flessner RM, Sullivan SP, et al. Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 2010;11(11):3136-43
  • van der Maaden K, Yu H, Sliedregt K, et al. Nanolayered chemical modification of silicon surfaces with ionizable surface groups for pH-triggered protein adsorption and release: application to microneedles. J Mater Chem B 2013;1:4466-77
  • Dubey S, Kalia YN. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1. J Control Release 2011;152(3):356-62
  • Guy RH, Kalia YN, Delgado-Charro MB, et al. Iontophoresis: electrorepulsion and electroosmosis. J Control Release 2000;64(1):129-32
  • Glenn GM, Taylor DN, Li X, et al. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 2000;6(12):1403-6
  • Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007;25(10):1159-64
  • Ghosh SK, Chowdhury RR. Synthetic adjuvants for vaccine formulations: phytol derivatives. Expert Opin Drug Deliv 2013;10(4):437-50
  • Chen D, Weis KF, Chu Q, et al. Epidermal powder immunization induces both cytotoxic T-lymphocyte and antibody responses to protein antigens of influenza and hepatitis B viruses. J Virol 2001;75(23):11630-40
  • Vasan S, Hurley A, Schlesinger SJ, et al. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 2011;6(5):e19252
  • Edens C, Collins ML, Ayers J, et al. Measles vaccination using a microneedle patch. Vaccine 2013;31(34):3403-9
  • Moon S, Wang Y, Edens C, et al. Dose sparing and enhanced immunogenicity of inactivated rotavirus vaccine administered by skin vaccination using a microneedle patch. Vaccine 2013;31(34):3396-402
  • Quan FS, Kim YC, Song JM, et al. Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch. Clin Vaccine Immunol 2013;20(9):1433-9
  • Kim Y-C, Quan F-S, Compans RW, et al. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release 2010;142(2):187-95
  • Sullivan SP, Koutsonanos DG, del Pilar Martin M, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med 2010;16(8):915-20
  • Chen X, Kask AS, Crichton ML, et al. Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release 2010;148(3):327-33
  • DeMuth PC, Min Y, Huang B, et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater 2013;12(4):367-76
  • Kost J, Langer R, Mitragotri S, et al. Transdermal monitoring of glucose and other analytes using ultrasound. Nat Med 2000;6(3):347-50
  • McCormick C, Heath D, Connolly P. Towards blood free measurement of glucose and potassium in humans using reverse iontophoresis. Sensors Actuators B Chem 2012;166:593-600
  • Oliver NS, Toumazou C, Cass AEG, et al. Glucose sensors: a review of current and emerging technology. Diabet Med 2009;26(3):197-210
  • Chuang H, Trieu M-Q, Hurley J, et al. Pilot studies of transdermal continuous glucose measurement in outpatient diabetic patients and in patients during and after cardiac surgery. J Diabetes Sci Technol (Online) 2008;2(4):595
  • Park E-J, Werner J, Beebe J, et al. Noninvasive ultrasonic glucose sensing with large pigs (approximately 200 Pounds) using a lightweight cymbal transducer array and biosensors. J Diabetes Sci Tech 2009;3(3):517-23
  • Miller PR, Gittard SD, Edwards TL, et al. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 2011;5(1):013415
  • Windmiller JR, Zhou N, Chuang M-C, et al. Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 2011;136(9):1846
  • Invernale MA, Tang BC, York RL, et al. Microneedle electrodes toward an amperometric glucose-sensing smart patch. Adv Healthcare Mater 2013. [ Epub ahead of print]
  • Coffey JW, Corrie SR, Kendall MAF. Early circulating biomarker detection using a wearable microprojection array skin patch. Biomaterials 2013;34(37):9572-83
  • Li CG, Lee K, Lee CY, et al. A minimally invasive blood-extraction system: elastic self-recovery actuator integrated with an ultrahigh-aspect-ratio microneedle. Adv Mater 2012;24(33):4583-6
  • Li CG, Lee CY, Lee K, et al. An optimized hollow microneedle for minimally invasive blood extraction. Biomed Microdevices 2012;15(1):17-25
  • Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev 2004;56(5):603-18
  • Watkinson AC. Transdermal and topical drug delivery today. In: Benson HAE, Watkinson AC, editors, Transdermal and topical drug delivery. John Wiley & Sons, Inc., Hoboken, NJ; 2012
  • Food and Drug Administration. Approved drug products with therapeutic equivalence evaluations. 33rd edition. Available from: http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM071436.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.