604
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology

, , , &

Bibliography

  • Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release 2012;161:377-88
  • Tarassoli P, Khan WS, Hughes A, Heidari N. A review of techniques for gene therapy in bone healing. Curr Stem Cell Res Ther 2013;8:201-9
  • Lieberman J, Daluiski A, Stevenson S, et al. The effect of regionalgene therapy with bone morphogenetic protein-2-producing bone- marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999;81:905
  • Shen HC, Peng H, Usas A, et al. Structural and functional healing of critical-size segmental bone defects by transduced muscle-derived cells expressing BMP4. J Gene Med 2004;6:984-91
  • Peterson B, Zhang J, Iglesias R, et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 2005;11:120-9
  • Zippel N, Schulze M, Tobiasch E. Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat Biotechnol 2010;4:1-22
  • Lufino MM, Edser PA, Wade-Martins R. Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 2008;16:1525-38
  • Epstein AL. Progress and prospects: biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors. Gene Ther 2009;16:709-15
  • Mingozzi F, Katherine A, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Genet Rev 2011;12:341-56
  • Maier P, von Kalle C, Laufs S. Retroviral vectors for gene therapy. Future Microbiol 2010;5:1507-23
  • Mátrai J, Chuah MK, VandenDriessche T. Recent advances in lentiviral vector development and applications. Mol Ther 2010;18:477-90
  • Buchholz CJ, Mühlebach MD, Cichutek K. Lentiviral vectors with measles virus glycoproteins - dream team for gene transfer? Trends Biotechnol 2009;27:259-65
  • Banasik MB, McCray PB Jr. Integrase-defective lentiviral vectors: progress and applications. Gene Ther 2010;17:150-7
  • Wanisch K, Yáñez-Muñoz RJ. Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 2009;17:1316-32
  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009;326:818-23
  • Lufino MM, Edser PA, Wade-Martins R. Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 2008;16:1525-38
  • Hibbitt OC, Wade-Martins R. Delivery of large genomic DNA inserts > 100 kb using HSV-1 amplicons. Curr Gene Ther 2006;6:325-36
  • Li CM, Park JH, Simonaro CM, et al. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 2002;79:218-24
  • Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80:148-58
  • Odom GL, Gregorevic P, et al. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochim Biophys Acta 2007;1772:243-62
  • Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010;467:318-22
  • Verma IM. Gene therapy that works. Science 2013;341:853-5
  • Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 2012;20:699-708
  • Grieger JC, Samulski RJ. Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol 2012;507:229-54
  • Stieger K, Cronin T, Bennett J, Rolling F. Adeno-associated virus mediated gene therapy for retinal degenerative diseases. Methods Mol Biol 2011;807:179-218
  • Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Gene therapy of primary T cell immunodeficiencies. Gene 2013;525:170-3
  • Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A. Gene therapy for primary immunodeficiencies: part 1. Curr Opin Immunol 2012;24:580-4
  • Wu C, Dunbar CE. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity. Front Med 2011;5:356-71
  • Biffi A, Aubourg P, Cartier N. Gene therapy for leukodystrophies. Hum Mol Genet 2011;20(R1):R42-53
  • Saffery R, Choo KH. Strategies for engineering human chromosomes with therapeutic potential. J Gene Med 2002;4:5-13
  • Basu J, Willard HF. Human artificial chromosomes: potential applications and clinical considerations. Pediatr Clin North Am 2006;53:843-53; viii
  • Monaco ZL, Moralli D. Progress in artificial chromosome technology. Biochem Soc Trans 2006;34(Pt 2):324-7
  • Ren X, Tahimic CG, Katoh M, et al. Human artificial chromosome vectors meet stem cells: new prospects for gene delivery. Stem Cell Rev 2006;2(1):43-50
  • Oshimura M, Katoh M. Transfer of human artificial chromosome vectors into stem cells. Reprod Biomed 2008;16(1):57-69
  • Kazuki Y, Oshimura M. Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 2011;19(9):1591-601
  • Ikeno M, Suzuki N. Construction and use of a bottom-up HAC vector for transgene expression. Methods Mol Biol 2011;2738:101-10
  • Kouprina N, Earnshaw WC, Masumoto H, Larionov V. A new generation of human artificial chromosomes for functional genomics and gene therapy. Cell Mol Life Sci 2013;70:1135-48
  • Yamaguchi S, Kazuki Y, Nakayama Y, et al. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS One 2011;6:e17267
  • Fournier RE, Ruddle FH. Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci USA 1977;74:319-23
  • Koi M, Shimizu M, Morita H, et al. Construction of mouse A9 clones containing a single human chromosome tagged with neomycin-resistance gene via microcell fusion. Jpn J Cancer Res 1989;80:413-18
  • Yamaguchi S, Ren X, Katoh M, et al. A new method of microcell-mediated transfer of human artificial chromosome using a hemagglutinating virus of Japan envelope. Chromosoma Sci 2006;9:65-73
  • Katoh M, Kazuki Y, Kazuki K. Exploitation of the interaction of measles virus fusogenic envelope proteins with the surface receptor CD46 on human cells for microcell-mediated chromosome transfer. BMC Biotechnol 2010;10:37
  • Uno N, Uno K, Zatti S, et al. The transfer of human artificial chromosomes via cryopreserved microcells. Cytotechnology 2013;65(5):803-9
  • Murray AW, Szostak JW. Construction of artificial chromosomes in yeast. Nature 1983;305:189-93
  • Nagaraja R, Kouprina N, Larionov V, et al. Yeast (YAC) and human artificial chromosome clones. In: eLS. John Wiley & Sons Ltd, Chichester; 2013. Available from: http://www.els.net/
  • Kouprina N, Larionov V. Exploiting the yeast Saccharomyces cerevisiae for the study of the organization and evolution of complex genomes. FEMS Microbiol Rev 2003;27:629-49
  • Heller R, Brown KE, Burgtorf C, et al. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci USA 1996;93:7125-30
  • Kazuki Y, Hoshiya H, Takiguchi M, et al. Refined human artificial chromosome vector for gene therapy and anaimal transgenesis. Gene Ther 2011;18:384-93
  • Buerstedde JM, Takeda S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 1991;67:179-88
  • Farr CJ, Stevanovic M, Thomson EJ, et al. Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 1992;2:275-82
  • Mills W, Critcher R, Lee C, et al. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet 1999;8:751-61
  • Brown KE, Barnett MA, Burgtorf C, et al. Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum Mol Genet 1994;3:1227-37
  • Kuroiwa Y, Shinohara T, Notsu T, et al. Efficient modification of a human chromosome by telomere-directed truncation in high homologous recombination-proficient chicken DT40 cells. Nucleic Acids Res 1998;26:3447-58
  • Katoh M, Ayabe F, Norikane S, et al. Construction of a novel human artificial chromosome vector for gene delivery. Biochem Biophys Res Commun 2004;321:280-90
  • Kakeda M, Nagata K, Osawa K, et al. A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells. Biochem Biophys Res Commun 2011;415:439-44
  • Oshimura M, Kazuki Y, Iida Y, et al. New vectors for gene delivery: human and mouse artificial chromosomes. In: eLS. John Wiley & Sons Ltd, Chichester. 2013. Available from: http://www.els.net/
  • Ebersole T, Okamoto Y, Noskov VN, et al. Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucl Acids Res 2005;33:e130
  • Noskov VN, Lee NC, Larionov V, Kouprina N. Rapid generation of long tandem DNA repeat arrays by homologous recombination in yeast to study their function in mammalian genomes. Biol Proced Online 2011;13(1):8
  • Moralli D, Simpson KM, Wade-Martins R, et al. A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors. EMBO Rep 2006;7:911-18
  • Harrington JJ, Van Bokkelen G, Mays RW, et al. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 1997;15:345-55
  • Ikeno M, Grimes B, Okazaki T, et al. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 1998;16:431-9
  • Ebersole TA, Ross A, Clark E, et al. Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum Mol Genet 2000;9:1623-31
  • Grimes BR, Schindelhauer D, McGill NI, et al. Stable gene expression from a mammalian artificial chromosome. EMBO Rep 2001;2:910-14
  • Kouprina N, Ebersole T, Koriabine M, et al. Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res 2003;31:922-34
  • Basu J, Stromberg G, Compitello G. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 2005;33:587-96
  • Ohzeki JI, Bergmann JH, Kouprina N, et al. Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J 2012;31:2391-402
  • Mandegar MA, Moralli D, Khoja S, et al. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Hum Mol Genet 2011;20:2905-13
  • Nakano M, Cardinale S, Noskov VN, et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 2008;14:507-22
  • Iida Y, Kim JH, Kazuki Y, et al. Human artificial chromosome with a conditional centromere for gene delivery and gene expression. DNA Res 2010;17:293-301
  • Kim JH, Kononenko A, Erliandri I, et al. Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proc Natl Acad Sci USA 2011;108:20048-53
  • Kouprina N, Samoshkin A, Erliandri I, et al. Organization of synthetic alphoid DNA array in human artificial chromosome (HAC) with a conditional centromere. ACS Synth Biol 2012;1:590-601
  • Suzuki N, Nishii K, Okazaki T, et al. Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J Biol Chem 2006;281:26615-23
  • Ikeno M, Inagaki H, Nagata K, et al. Generation of human artificial chromosomes expressing naturally controlled guanosine triphosphate cyclohydrolase I gene. Genes Cells 2002;7:1021-32
  • Auriche C, Carpani D, Conese M, et al. Functional human CFTR produced by a stable minichromosome. EMBO Rep 2002;3:862-8
  • Rocchi L, Braz C, Cattani S, et al. Escherichia coli-cloned CFTR loci relevant for human artificial chromosome therapy. Hum Gene Ther 2010;21:1077-92
  • Yakura Y, Ishihara C, Kurosaki H, et al. An induced pluripotent stem cell-mediated and integration-free factor VIII expression system. Biochem Biophys Res Commun 2013;431:36-341
  • Suzuki N, Itou T, Hasegawa Y, et al. Cell to cell transfer of the chromatin-packaged human beta-globin gene cluster. Nucleic Acids Res 2010;38:e33
  • Breman AM, Steiner CM, Slee RB, et al. Input DNA ratio determines copy number of the 33 kb factor IX gene on de novo human artificial chromosomes. Mol Ther 2008;16:315-23
  • Yamada H, Li YC, Nishikawa M, et al. Introduction of a CD40L genomic fragment via a human artificial chromosome vector permits cell-type-specific gene expression and induces immunoglobulin secretion. J Hum Genet 2008;53:447-53
  • Kazuki Y, Hoshiya H, Kai Y, et al. Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene Ther 2008;15:617-24
  • Hoshiya H, Kazuki Y, Abe S, et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol Ther 2009;17:309-17
  • Kazuki Y, Hiratsuka M, Takiguchi M, et al. Complete genetic correction of iPSs cells from Duchenne muscular dystrophy. Mol Ther 2010;18:386-93
  • Mejía JE, Willmott A, Levy E. Functional complementation of a genetic deficiency with human artificial chromosomes. Am J Hum Genet 2001;69:315-26
  • Kazuki Y, Hoshiya H, Kai Y, et al. Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene Ther 2008;15:617-24
  • Ayabe F, Katoh M, Inoue T, et al. A novel expression system for genomic DNA loci using a human artificial chromosome vector with transformation-associated recombination cloning. J Hum Genet 2005;50:592-9
  • Kazuki Y, Kobayashi K, Aueviriyavit S, et al. Trans-chromosomic mice containing a human CYP3A cluster for prediction of xenobiotic metabolism in humans. Hum Mol Genet 2013;22:578-92
  • Kuroiwa Y, Tomizuka K, Shinohara T, et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 2000;18:1086-90
  • Kuroiwa Y, Kasinathan P, Choi YJ, et al. Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 2002;20:889-94
  • Kuroiwa Y, Kasinathan P, Sathiyaseelan T, et al. Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol 2009;27:173-81
  • Voet T, Schoenmakers E, Carpentier S, et al. Controlled transgene dosage and PAC-mediated transgenesis in mice using a chromosomal vector. Genomics 2003;82:596-605
  • Ikeno M, Suzuki N, Hasegawa Y, Okazaki T. Manipulating transgenes using a chromosome vector. Nucleic Acids Res 2009;37:e44
  • Hiratsuka M, Uno N, Ueda K, et al. Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS One 2011;6:e25961
  • Tedesco FS, Hoshiya H, D'Antona G, et al. Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med 2011;3:96ra78
  • Tedesco FS, Gerli MF, Perani L, et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 2012;4:140ra89
  • Tedesco FS, Cossu G. Stem cell therapies for muscle disorders. Curr Opin Neurol 2012;25:597-603
  • Suzuki N, Nishii K, Okazaki T, et al. Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J Genomics 2003;82:596-605
  • Voet T, Schoenmakers E, Carpentier S, et al. Controlled transgene dosage and PAC-mediated transgenesis in mice using a chromosomal vector. Biol Chem 2006;281:26615-23
  • Suzuki N, Itou T, Hasegawa Y, et al. Cell to cell transfer of the chromatin-packaged human beta-globin gene cluster. Nucleic Acids Res 2010;8:e33
  • Larionov V, Kouprina N, Graves J, et al. Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Natl Acad Sci USA 1996;93:491-6
  • Kouprina N, Larionov V. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nat Rev Genet 2006;7:805-12
  • Kouprina N, Larionov V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protocols 2008;3:371-7
  • Leem SH, Noskov VN, Park JE, et al. Optimum conditions for selective isolation of genes from complex genomes by transformation-associated recombination cloning. Nucleic Acids Res 2003;31:e29
  • Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013;3:397-405
  • Noskov VN, Chuang RY, Gibson DG, et al. Isolation of circular yeast artificial chromosomes for synthetic biology and functional genomics studies. Nat Protoc 2011;6:89-96
  • Pikaart MJ, Recillas-Targa F, Felsenfeld G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev 1998;12:2852-62
  • Kim JH, Ebersole T, Kouprina N, et al. Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing. Genome Res 2009;19:533-44
  • Raab JR, Chiu J, Zhu J, et al. Human tRNA genes function as chromatin insulators. EMBO J 2011;31:330-50
  • Ebersole T, Kim JH, Samoshkin A, et al. tRNA genes protect a reporter gene from epigenetic silencing in mouse cells. Cell Cycle 2011;10:2779-91
  • Lee NC, Kononenko AV, Lee HS, et al. Protecting a transgene expression from the HAC-based vector by different chromatin insulators. Cell Mol Life Sci 2013;70(19):3723-37
  • Kononenko AV, Lee NC, Earnshaw WC, et al. Re-engineering an alphoidtetO-HAC-based vector to enable high-throughput analyses of gene function. Nucl Acids Res 2013;41:e107
  • Meaburn KJ, Parris CN, Bridger JM. The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma 2005;114:263-74
  • Barker N, Rookmaaker MB, Kujala P, et al. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep 2012;2:540-52
  • Huch M, Boj SF, Clevers H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen Med 2013;8:385-7
  • Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 2013;340:1190-4
  • Nguyen TH, Mai G, Villiger P, et al. Treatment of acetaminophen-induced acute liver failure in the mouse with conditionally immortalized human hepatocytes. J Hepatol 2005;43:1031-7
  • Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans Royal Soc Lond B Biol Sci 2011;366:2198-207
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76
  • Liskovykh M, Chuykin I, Ranjan A, et al. Derivation, characterization, and stable transfection of induced pluripotent stem cells from Fischer344 rats. PLoS One 2011;6:e27345
  • Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949-53
  • Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945-9
  • Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010;7:618-30
  • Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009;4:381-4
  • Baranov VS. Genome paths: a way to personalized and predictive medicine. Acta Naturae 2009;1:70-80
  • Gokhale PJ, Andrews PW. The development of pluripotent stem cells. Curr Opin Genet Dev 2012;22:403-8
  • Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 2010;28:1568-70
  • Schuldiner M, Itskovitz-Eldor J, Benvenisty N. Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 2003;21:257-65
  • Cheng F, Ke Q, Chen F, et al. Protecting against wayward human induced pluripotent stem cells with a suicide gene. Biomaterials 2012;33:3195-204
  • Thompson SL, Compton DA. Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc Natl Acad Sci USA 2011;108:17974-8
  • Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal instability. Cur Biol 2010;20:R285-95
  • Janssen A, Kops GJ, Medema RH. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci USA 2009;106:19108-13
  • Stirling PC, Bloom MS, Solanki-Patil T, et al. The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 2011;7:e1002057
  • Stirling PC, Crisp MJ, Basrai MA, et al. Mutability and mutational spectrum of chromosome transmission fidelity genes. Chromosoma 2012;121:263-75
  • Lee HS, Lee NC, Grimes BR, et al. A new assay for measuring chromosome instability (CIN) and identification of drugs that elevate CIN in cancer cells. BMC Cancer 2013;13:252
  • Kennard ML, Goosney DL, Monteith D, et al. The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 2009;104:540-53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.