351
Views
55
CrossRef citations to date
0
Altmetric
Reviews

Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers

, , , &

Bibliography

  • Boyle P, Levin B. editors. Worldwide cancer burden. In: World cancer report 2014. International Agency for Research on Cancer; Lyon, France: 2014. p. 16-54
  • Cheong I, Huang X, Thornton K, et al. Targeting cancer with bugs and liposomes: ready, aim, fire. Cancer Res 2007;67:9605-8
  • Caraglia M, Marra M, Misso G, et al. Tumour-specific uptake of anti-cancer drugs: the future is here. Curr Drug Metab 2012;13:4-21
  • Roger E, Lagarce F, Garcion E, Benoit J-P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine 2010;5(2):287-306
  • Sharma A, Madhunapantula SV, Robertson GP. Toxicological considerations when creating nanoparticle-based drugs and. Expert Opin Drug Metab Toxicol 2012;8:47-69
  • Savolainen K, Alenius H, Norppa H, et al. Risk assessment of engineered nanomaterials and nanotechnologies--a review. Toxicology 2010;269:92-104
  • Schulte PA, Trout D, Zumwalde RD, et al. Options for occupational health surveillance of workers potentially exposed to engineered nanoparticles: state of the science. J Occup Environ Med 2008;50:517-26
  • Couvreur P, Kante B, Roland M, Speiser P. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 1979;68:1521-4
  • Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 2009;6:1041-51
  • Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 2008;5:496-504
  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nano-particles. Mol Pharm 2008;5:505-15
  • Levy I, Roberts J, Baum M. The use of liposomes in the diagnosis and treatment of malignant disease. Postgrad Med J 1987;63:829-33
  • Drummond DC, Meyer O, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999;51:691-743
  • Weissig V, Torchilin VP. Liposomes: a practical approach. In: Torchilin VP, Weissig V, editors. Surface modifications of liposomes. Oxford University Press, Oxford; 2003. p. 384
  • Maeda H. Enhanced permeability and retention (EPR) effect: basis for drug targeting to tumors. In: Muzykantov V, Torchilin VP, editors. Biomedical aspects of drug targeting. Kluwer, Boston, MA; 2003. p. 211-28
  • Storm G, Oussoren C, Peeters PAM, Barenholz Y. Tolerability of liposomes in vivo. In: Gregoriadis G, editor. Liposome technology. CRC Press, Inc, Boca Raton, FL; 1993. p. 345-383
  • Shmeeda H, Amitay Y, Gorin J, et al. Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. J Control Release 2010;146(1):76-83
  • Shmeeda H, Amitay Y, Tzemach D, et al. Liposome encapsulation of zoledronic acid results in major changes in tissue distribution and increase in toxicity. J Control Release 2013;167(3):265-75
  • Marra M, Salzano G, Leonetti C, et al. Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine 2011;7(6):955-64
  • Elbayoumi TA, Torchilin VP. “Tumor-specific antmediated targeted delivery of Doxil reduces the manifestof auricular erythema side effect in mice”. Int J Pharm 2008;357(1-2):272-9
  • Sahoo NG, Bao H, Pan Y, et al. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 2011;47:5235-7
  • Kang B, Chang S, Dai Y, et al. Cell response to carbon nanotubes: size-dependent intracellular uptake mechanism and subcellular fate. Small 2010;6(21):2362-6
  • Mallick K, Strydom AM. Biophilic carbon nanotubes. Colloids Surf B Biointerfaces 2013;105:310-18
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674-9
  • Lim DJ, Sim M, Oh L, et al. Carbon-based drug delivery carriers for cancer therapy. Arch Pharm Res 2014;37(1):43-52
  • Chen H, Ma X, Li Z, et al. Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed Pharmacother 2012;60(5):334-8
  • Avti PK, Sitharaman B. Luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging. Int J Nanomedicine 2012;7:1953-64
  • Magrini A, Bergamaschi A, Bergamaschi E. Carbon nanotubes (CNT) and nanoparticles (NP): interaction with lung epithelium and other biological systems. G Ital Med Lav Ergon 2006;28(3):266-9
  • Johnston HJ, Hutchison GR, Christensen FM, et al. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 2010;4(2):207-46
  • Haag R. Supramolecular drug-delivery systems based on polymeric core–shell architectures. Angew Chem Int Ed 2004;43:278-82
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92(7):1343-55
  • Ostacolo L, Marra M, Ungaro F, et al. In vitro anticancer activity of docetaxel-loaded micelles based on poly(ethylene oxide)-poly(epsilon-caprolactone) block copolymers: do nanocarrier properties have a role? J Control Release 2010;148(2):255-63
  • Ungaro F, Conte C, Ostacolo L, et al. Core-shell biodegradable nanoassemblies for the passive targeting of docetaxel: features, antiproliferative activity and in vivo toxicity. Nanomedicine 2012;8(5):637-46
  • Duncan R, Gac-Breton S, Keane R, et al. Polymer-drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J Control Release 2001;74(1-3):135-46
  • Xue Y, Tang X, Huang J, et al. Anti-tumor efficacy of polymer-platinum(II) complex micelles fabricated from folate conjugated PEG-graft-α,β-poly [(N-amino acidyl)-aspartamide] and cis-dichlorodiammine platinum(II) in tumor-bearing mice. Colloids Surf B Biointerfaces 2011;85(2):280-8
  • Chung YI, Kim JC, Kim YH, et al. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. J Control Release 2010;143(3):374-82
  • Weissleder R, Tung CH, Mahmood U, et al. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999;17(4):375-8
  • Kim SE, Kwon IC, Song HR, et al. Insight of key factors influencing tumor targeting characteristics of Glycol Chitosan-based nanoparticles and in vivo applications. Macromol Res 2012;20(11):1109-17
  • Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005;23(12):1517-26
  • Tomalia DA, Baker H, Dewald J, et al. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 1986;19(9):2466-8
  • Hawkerand J, Frechet MJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990;112(21):7638-47
  • Wang P, Zhao XH, Wang ZY, et al. Generation 4 polyamidoamine dendrimers is a novel candidate of nano-carrier for gene delivery agents in breast cancer treatment. Cancer Lett 2010;298(1):34-49
  • Gupta U, Dwivedi SKD, Bid HK, et al. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int J Pharm 2010;393(2):186-97
  • Samuelson LE, Dukes MJ, Hunt CR, et al. TSPO targeted dendrimer imaging agent: synthesis, characterization, and cellular internalization. Bioconjug Chem 2009;20:2082-9
  • Solans C, Izquierdo P, Nolla J, et al. Nano-emulsions. Curr Opin Colloid Interface Sci 2005;10:102
  • Ganta S, Paxton JW, Baguley BC, Garg S. Pharmacokinetics and pharmacodynamics of chlorambucil delivered in parenteral emulsion. Int J Pharm 2008;360(1-2):115-21
  • Khanal A, Inoue Y, Yada M, et al. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. J Am Chem Soc 2007;129:1534-5
  • Yang J, Lee J, Kang J, et al. Hollow silica nanocontainers as drug delivery vehicles. Langmuir 2008;24:3417-21
  • Venkatesan P, Puvvada N, Dash R, et al. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials 2011;32(15):3794-806
  • Wang KW, Zhu YJ, Chen XY, et al. Flower-like hierarchically nanostructured hydroxyapatite hollow spheres: facile preparation and application in anticancer drug cellular delivery. Chem Asian J 2010;5(12):2477-82
  • Morales MP, Bomati-Miguel O, de Alejo RP, et al. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater 2003;266:102-9
  • Mahfouz AE, Hamm B, Taupitz M. Contrast agents for MR imaging of the liver: a clinical overview. Eur Radiol 1997;7:507-13
  • Martinez-Mera I, Espinosa ME, Perez-Hernandez R, et al. Synthesis of magnetite (Fe“3O”4) nanoparticles without surfactants at room temperature. J Mater Lett 2007;61:4447
  • Chastellain M, Petri A, Gupta A, et al. Scalable synthesis of new class of polymer microrods by a liquid-liquid dispersion technique. Adv Eng MaterAdv Eng Mater 2004;6:235
  • Sun C, Veiseh O, Gunn J, et al. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 2008;4:372-9
  • Apopa PL, Qian Y, Shao R, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 2009;6:1
  • Zhang H, Chen B, Jiang H, et al. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 2011;32(7):1906-14
  • Duncan B, Kim C, Rotello VM. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release 2010;148:122-7
  • Giljohann DA, Seferos DS, Prigodich AE, et al. Gene regulationwith polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 2009;131:2072-3
  • Kim CK, Ghosh P, Pagliuca C, et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc 2009;131:1360-1
  • Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011;5(7):5478-89
  • Eghtedari M, Liopo AV, Copland JA, et al. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 2009;9(1):287-91
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005;1(3):325-7
  • Xiao Y, Hong H, Matson VZ, et al. Gold nanorods conjugated with Doxorubicin and cRGD for combined anticancer drug delivery and Pet imaging. Thernostics 2012;2(8):757-68
  • Wang C, Chen J, Talavage T, et al. Gold Nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem 2009;48(15):2759-276
  • Ferreira AJ, Cemlyn-Jones J, Robalo Cordeiro C. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev Port Pneumol 2013;19(1):28-37
  • Zarogoulidis P, Giraleli C, Karamanos NK. Inhaled chemotherapy in lung cancer: safety concerns of nanocomplexes delivered. Ther Deliv 2012;3(9):1021-3
  • Kendall M, Holgate S. Health impact and toxicological effects of nanomaterials in the lung. Respirology 2012;17(5):743-58
  • Morimoto Y, Hirohashi M, Ogami A, et al. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology 2012;6(6):587-99
  • Wang L, Stueckle TA, Mishra A, et al. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology 2014;8(5):485-507
  • Sargent LM, Porter DW, Staska LM, et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 2014;11(1):3
  • Nemmar A, Hoet PH, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002;105(4):411-14
  • Dokka S, Toledo D, Shi X, et al. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 2000;17:521-5
  • Khandoga A, Stampfl A, Takenaka S, et al. Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 2004;109(10):1320-5
  • Radomski A, Jurasz P, Alonso-Escolano D, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005;146(6):882-93
  • Hoet PH, Bruske-Hohlfeld I & Salata OV. Nanoparticles—known and unknown health risks. J Nanobiotechnol 2004;2:12
  • Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004;112:1058-62
  • Panyala N, Pena-Mendez EM, Havel J. Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 2008;6:17-129
  • Sarin H, Kanevsky AS, Wu H, et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 2008;6:80
  • Caraglia M, Luongo L, Salzano G, et al. Stealth liposomes encapsulating zoledronic acid: a new opportunity to treat neuropathic pain. Mol Pharm 2013;10(3):1111-18
  • Tang J, Xiong L, Wang S, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 2009;9:4924-32
  • Sharma HS, Hussain S, Schlager J, et al. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir 2010;106:359-64
  • Tang M, Xing T, Zeng J, et al. Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 2008;116(7):915-22
  • Hussain SM, Javorina AK, Schrand AM, et al. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 2006;92:456-63
  • Belyanskaya L, Weigel S, Hirsch C, et al. Effects of carbon nanotubes on primary neurons and glial cellsz. Neurotoxicology 2009;30:702
  • Schenk M, Mueller C. The mucosal immune system at the gastrointestinal barrier. Best Pract Res Clin Gastroenterol 2008;22:391-409
  • Schleh C, Semmler-Behnke M, Lipka J, et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 2012;6(1):36-46
  • Peng Q, Zhang ZR, Sun X, et al. Mechanisms of phospholipid complex loaded nanoparticles enhancing the oral bioavailability. Mol Pharm 2010;7(2):565-75
  • Wiwattanapatapee R, Carreno-Gomez B, et al. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 2000;17(8):991-8
  • Jos A, Pichardo S, Puerto M, et al. Cytotoxicity ofvcarboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro 2009;23(8):1491-6
  • Lai X, Blazer-Yost BL, Clack JW, et al. Protein expression profiles of intestinal epithelial co-cultures: effect of functionalised carbon nanotube exposure. Int J Biomed Nanosci Nanotechnol 2013;3:1-2
  • Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health 2003;66:1909-26
  • Cainelli F, Vallone A. Safety and efficacy of pegylated liposomal doxorubicin in HiV-associated Kaposi's sarcoma. Biologics 2009;3:385-90
  • Murray AR, Kisin E, Leonard SS, et al. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 2009;257(3):161-71
  • Cucinotto I, Fiorillo L, Gualtieri S, et al. Nanoparticle albumin bound Paclitaxel in the treatment of human cancer: nanodelivery reaches prime-time? J Drug Deliv 2013;2013:905091
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006;1(3):297-315
  • Salzano G, Marra M, Porru M, et al. Self-assembly nanoparticles for the delivery of bisphosphonates into tumors. Int J Pharm 2011;403(1-2):292-7
  • Marra M, Salzano G, Leonetti C, et al. New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol Adv 2012;30(1):302-9
  • Di Martino MT, Campani V, Misso G, et al. In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLOS One 2014;9(2):e90005, doi:10.1371/journal.pone.0090005
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2:48-58

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.