376
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Do bacterial cellulose membranes have potential in drug-delivery systems?

, PhD, , PhD & , PhD

Bibliography

  • Klemm D, Heublein B, Fink H-P, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 2005;44(22):3358-93
  • Gandini A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 2008;41(24):9491-504
  • Huber T, Müssig J, Curnow O, et al. A critical review of all-cellulose composites. J Mater Sci 2011;47(3):1171-86
  • Chawla PR, Bajaj IB, Survase SA, et al. Microbial cellulose: fermentative production and applications. Food Technol Biotecnol 2009;47(2):107-24
  • Brown AJ. XLIII-On an acetic ferment which form cellulose. J Chem Soc 1886;49:432-9
  • Brown AJ. XIX.—The chemical action of pure cultivations of bacterium aceti. J Chem Soc 1886;49:172-87
  • Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose — a masterpiece of nature’s arts. J Mater Sci 2000;35(2):261-70
  • Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose — artificial blood vessels for microsurgery. Prog Polym Sci 2001;26(9):1561-603
  • Shi Z, Zhang Y, Phillips GO, et al. Utilization of bacterial cellulose in food. Food Hydrocoll 2014;35:539-45
  • Trovatti E, Serafim LS, Freire CSR, et al. Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym 2011;86(3):1417-20
  • Gomes FP, Silva NHCS, Trovatti E, et al. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 2013;55:205-11
  • Hestrin S, Schramm M. Synthesis of cellulose by Acetobacter xylinum II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 1954;58:345-52
  • Nge TT, Sugiyama J, Bulone V. Bacterial cellulose-based biomimetic composites. In: Elnashar M, editor. Biopolymers. Sciyo, Rijeka; 2010. p. 345-68
  • Helenius G, Bäckdahl H, Bodin A, et al. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 2006;76(2):431-8
  • Jonas R, Farah LF. Production and application of microbial cellulose. Polym Degrad Stab 1998;59(1-3):101-6
  • Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose — artificial blood vessels for microsurgery. Prog Polym Sci 2001;26(9):1561-603
  • Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 2011;50(24):5438-66
  • Sani A, Dahman Y. Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. J Chem Technol Biotechnol 2010;85:151-64
  • Watanabe K, Tabuchi M, Morinaga Y, et al. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 1998;5(3):187-200
  • Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 2013;92:1432-42
  • Fu L, Zhang Y, Li C, et al. Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 2012;22:12349-57
  • White DG, Brown RM. Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerch C, editor. Cellulose and wood-chemistry and technology. John Wiley and Sons, New York; 1989. p. 573-90
  • Czaja W, Romanovicz D, Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 2004;11(3-4):403-11
  • Cheng K-C, Catchmark JM, Demirci A. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 2009;3:12
  • Hu Y, Catchmark JM. Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 2010;11(7):1727-34
  • Kalia S, Dufresne A, Cherian BM, et al. Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011;2011:1-35
  • Pecoraro É, Manzani D, Messaddeq Y, et al. Bacterial cellulose from glucanacetobacter xylinus: preparation, properties and applications. In: Gandini A, editor. Monomers, polymers and composited from renewable resources. Elsevier, Amsterdam; 2008. p. 369-74
  • Klemm D, Schumann D, Kramer F, et al. Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 2006;205:49-96
  • Chen P, Cho SY, Jin H-J. Modification and applications of bacterial celluloses in polymer science. Macromol Res 2010;18:309-20
  • Shah N, Ul-Islam M, Khattak WA, et al. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 2013;98:1585-98
  • Hu W, Chen S, Yang J, et al. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 2014;101:1043-60
  • Figueiredo ARP, Vilela C, Pascoal Neto C, et al. Bacterial cellulose based nanocomposites: a roadmap for innovative materials. In: Kumar V, editor. Nanocellulose/polymer nanocomposites: from fundamental to applications. John Wiley and Sons, New York; in press
  • Czaja W, Krystynowicz A, Bielecki S, et al. Microbial cellulose-the natural power to heal wounds. Biomaterials 2006;27(2):145-51
  • Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 2010;17(3):459-94
  • Yamanaka S, Watanabe K, Kitamura N, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 1989;24(9):3141-5
  • Shi Z, Zang S, Jiang F, et al. In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv 2012;2(3):1040-6
  • Jeong SI, Lee SE, Yang H, et al. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol Cell Toxicol 2010;6:373-80
  • Lina F, Yue Z, Jin Z, et al. Bacterial cellulose for skin repair materials. In: Fazel-Rezai P, editor. Biomedical engineering - frontiers and challenges. Intech, Rijeka; 2011. p. 249-74
  • Almeida IF, Pereira T, Silva NHCS, et al. Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 2014;106:264-9
  • Wu S-C, Lia Y-K. Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B Enzym 2008;54:103-8
  • Nguyen DN, Ton NMN, Le VVM. Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by “adsorption- incubation” method. Int Food Res J 2009;16:59-64
  • Ton NMN, Le VVM. Application of immobilized yeast in bacterial cellulose to the repeated batch fermentation in wine-making. Int Food Res J 2011;18(3):983-7
  • Backdahl H, Risberg B, Gatenholm P. Observations on bacterial cellulose tube formation for application as vascular graft. Mater Sci Eng C 2011;31(1):14-21
  • Wan Y, Gao C, Han M, et al. Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polym Adv Technol 2011;22:2643-8
  • Wang J, Gao C, Zhang Y, et al. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 2010;30:214-18
  • Millon LE, Wan WK. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B 2006;79(2):245-53
  • Zimmermann KA, LeBlanc JM, Sheets KT, et al. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 2011;31:43-9
  • Svensson A, Nicklasson E, Panilaitis B, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005;26:419-31
  • Nimeskern L, Ávila HM, Sundberg J, et al. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 2013;22:12-21
  • Amnuaikit T, Chusuit T, Raknam P, et al. Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med Devices (Auckl) 2011;4:77-81
  • Hasan N, Biak DRA, Kamarudin S. Application of bacterial cellulose (BC) in natural facial scrub. Int J Adv Sci Eng Inf Technol 2012;2:1-4
  • Heath, Benjamin Parker, Coffindaffer TW, Kyte, Kenneth Eugene, Smith Edward Dewey, McConaughy SD. Personal cleansing compositions comprising bacterial cellulose network and cationic polymer. US 8097574; 2010
  • Wiegand C, Elsner P, Hipler U-C, et al. Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 2006;13(6):689-96
  • Luo H, Xiong G, Huang Y, et al. Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 2008;110(2-3):193-6
  • Zhijiang C, Guang Y. Bacterial cellulose/ collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 2011;120:2938-44
  • Saska S, Teixeira LN, Tambasco de Oliveira P, et al. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 2012;22(41):22102
  • Brown EE, Zhang J, Laborie M-PG. Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties. Cellulose 2011;18:631-41
  • Lin S-B, Hsu C-P, Chen L-C, et al. Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocoll 2009;23(8):2195-203
  • Brown EE, Laborie M-PG, Zhang J. Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 2011;19(1):127-37
  • Wang J, Wan YZ, Luo HL, et al. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater Sci Eng C 2012;32(3):536-41
  • Chang S-T, Chen L-C, Lin S-B, et al. Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll 2012;27(1):137-44
  • Taokaew S, Seetabhawang S, Siripong P, et al. Biosynthesis and characterization of nanocellulose-gelatin films. Materials (Basel) 2013;6(3):782-94
  • Choi Y, Cho SY, Heo S, et al. Enhanced mechanical properties of silk fibroin-based composite plates for fractured bone healing. Fibers Polym 2013;14(2):266-70
  • Hu Y, Catchmark JM. Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res B Appl Biomater 2011;97(1):114-23
  • Zhu H, Jia S, Yang H, et al. Characterization of bacteriostatic sausage casing: A composite of bacterial cellulose embedded with εpolylysine. Food Sci Biotechnol 2010;19(6):1479-84
  • Hu Y, Catchmark JM. In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 2011;7(7):2835-45
  • Khripunov AK, Baklagina YG, Sinyaev VA, et al. Investigation of nanocomposites based on hydrated calcium phosphates and cellulose Acetobacter xylinum. Glass Phys Chem 2008;34:192-200
  • Grande CJ, Torres FG, Gomez CM, et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 2009;5:1605-15
  • Shi S, Chen S, Zhang X, et al. Biomimetic mineralization synthesis of calcium-deficient carbonate-containing hydroxyapatite in a three-dimensional network of bacterial cellulose. J Chem Technol Biotechnol 2009;84:285-90
  • Wan YZ, Gao C, Luo HL, et al. Early growth of nano-sized calcium phosphate on phosphorylated bacterial cellulose nanofibers. J Nanosci Nanotechnol 2009;9:6494-500
  • Romanov DP, Baklagina YG, Gubanova GN, et al. Formation of organic-inorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications. Glass Phys Chem 2010;36:484-93
  • Yin N, Chen S, Ouyang Y, et al. Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog Nat Sci Mater Int 2011;21:472-7
  • Hammonds RL, Harrison MS, Cravanas TC, et al. Biomimetic hydroxyapatite powder from a bacterial cellulose scaffold. Cellulose 2012;19:1923-32
  • Tolmachev DA, Lukasheva NV. Interactions binding mineral and organic phases in nanocomposites based on bacterial cellulose and calcium phosphates. Langmuir 2012;28:13473-84
  • Fan X, Zhang T, Zhao Z, et al. Preparation and characterization of bacterial cellulose microfiber/goat bone apatite composites for bone repair. J Appl Polym Sci 2013;129:595-603
  • Marques PAAP, Nogueira HIS, Pinto RJB, et al. Silver-bacterial cellulosic sponges as active SERS substrates. J Raman Spectrosc 2008;39:439-43
  • Barud HS, Barrios C, Regiani T, et al. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C 2008;28:515-18
  • Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 2008;72:43-51
  • Klechkovskaya VV, Volkov VV, Shtykova EV, et al. Network model of Acetobacter xylinum cellulose intercalated by drug nanoparticles. In: Giersig M, Khomutov GB, editors. Nanomaterials for applications in medicine and biology. Springer, Dordrecht; 2008. p. 165-77
  • Sun D, Yang J, Li J, et al. Preparation and antibacterial capacity of artificial skin loaded with nanoparticles silver using bacterial cellulose. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2009;26:1034-8
  • Ifuku S, Tsuji M, Morimoto M, et al. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 2009;10:2714-17
  • Jung R, Kim Y, Kim H-S, et al. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym Ed 2009;20:311-24
  • Volkov V V, Klechkovskaya V V, Shtykova E V, et al. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy. Crystallogr Rep 2009;54:169-73
  • De Santa Maria LC, Santos ALC, Oliveira PC, et al. Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater Lett 2009;63:797-9
  • Pinto RJB, Marques PAAP, Pascoal Neto C, et al. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 2009;5:2279-89
  • Sureshkumar M, Siswanto DY, Lee C-K. Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 2010;20:6948-55
  • Maria LCS, Santos ALC, Oliveira PC, et al. Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polim Cien Tecnol 2010;20:72-7
  • Wang W, Li H-Y, Zhang D-W, et al. Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Electroanalysis 2010;22:2543-50
  • Wang W, Zhang T-J, Zhang D-W, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Talanta 2011;84:71-7
  • Yang G, Xie J, Hong F, et al. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 2012;87:839-45
  • Yang G, Xie J, Deng Y, et al. Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydr Polym 2012;87(4):2482-7
  • Liu C, Yang D, Wang Y, et al. Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory. J Nanopart Res 2012;14:1084-95
  • Berndt S, Wesarg F, Wiegand C, et al. Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 2013;20:771-83
  • Zhang X, Fang Y, Chen W. Preparation of silver/bacterial cellulose composite membrane and study on its antimicrobial activity. Syn React Inorg Met 2013;43:907-13
  • Dobre ML, Stoica-Guzun A. Antimicrobial Ag-polyvinyl alcohol-bacterial cellulose composite films. J Biobased Mater Bioenergy 2013;7:157-62
  • Kim B, Choi Y, Cho SY, et al. Silver nanowire catalysts on carbon nanotubes-incorporated bacterial cellulose membrane electrodes for oxygen reduction reaction. J Nanosci Nanotechnol 2013;13(11):7454-8
  • Trovatti E, Silva NHCS, Duarte IF, et al. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 2011;12:4162-8
  • Trovatti E, Freire CSR, Pinto PC, et al. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 2012;435(1):83-7
  • Silva NHCS, Drumond I, Almeida IF, et al. Topical caffeine delivery using biocellulose membranes: a potential innovative system for cellulite treatment. Cellulose 2014;21:665-74
  • Silva NHCS, Rodrigues AF, Almeida IF, et al. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 2014;106:264-9
  • Amin MCIM, Abadi AG, Ahmad N, et al. Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 2012;41(5):561-8
  • Huang L, Chen X, Nguyen TX, et al. Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 2013;1(23):2976-84
  • Luan J, Wu J, Zheng Y, et al. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 2012;7: ID065006
  • Mueller A, Ni Z, Hessler N, et al. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 2013;102(2):579-92
  • Pavaloiu R-D, Stoica A, Stroescu M, et al. Controlled release of amoxicillin from bacterial cellulose membranes. Cent Eur J Chem 2014;12:962-7
  • Stoica-Guzun A, Stroescu M, Tache F, et al. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instrum Meth Phys Res B 2007;265(1):434-8
  • De Olyveira GM, Manzine Costa LM, Basmaji P. Physically modified bacterial cellulose as alternative routes for transdermal drug delivery. J Biomater Tissue Eng 2013;3(2):227-32
  • Jipa IM, Stoica-Guzun A, Stroescu M. Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT-Food Sci Technol 2012;47(2):400-6
  • Halib N, Amin MCIM, Ahmad I, et al. Swelling of bacterial cellulose-acrylic acid hydrogels: sensitivity towards external stimuli. Sains Malaysiana 2009;38(5):785-91
  • Halib N, Amin MCIM, Ahmad I. Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. J Appl Polym Sci 2010;116:2920-9
  • Amin MCIM, Ahmad N, Halib N, et al. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 2012;88(2):465-73
  • Stroescu M, Stoica-Guzun A, Jipa IM. Vanillin release from poly(vinyl alcohol)-bacterial cellulose mono and multilayer films. J Food Eng 2013;114(2):153-7
  • Mori R, Nakai T, Enomoto K, et al. Increased antibiotic release from a bone cement containing bacterial cellulose. Clin Orthop Relat Res 2011;469(2):600-6
  • Shi Q, Li Y, Sun J, et al. The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 2012;33(28):6644-9
  • FMC Biopolymer: Aquacoat®. Available from: http://www.fmcbiopolymer.com/Pharmaceutical/Products/Aquacoat.aspx [Accessed on April 2014]
  • Bodhibukkana C, Srichana T, Kaewnopparat S, et al. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release 2006;113(1):43-56
  • Pandey M, Amin MCIM, Ahmad N, et al. Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci 2013: ID 905471
  • Lacerda PSS, Barros-Timmons AMMV, Freire CSR, et al. Nanostructured composites obtained by ATRP SLEEVING of bacterial cellulose nanofibers with acrylate polymers. Biomacromolecules 2013;14:2063-73
  • Dong C, Qian L-Y, Zhao G-L, et al. Preparation of antimicrobial cellulose fibers by grafting beta-cyclodextrin and inclusion with antibiotics. Mater Lett 2014;124:181-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.