518
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Erythrocytes-based synthetic delivery systems: transition from conventional to novel engineering strategies

, , &

Bibliography

  • Hamidi M, Tajerzadeh H. Carrier erythrocytes: an overview. Drug Deliv 2003;10(1):9-20
  • Rossi L, Serafini S, Pierigé F, et al. Erythrocyte-based drug delivery. Expert Opin Drug Deliv 2005;2(2):311-22
  • Greer JP, Foerster J, Rodgers GM, et al. The mature erythrocytes. In: Greer JP, editor. Wintrobe’s clinical hematology. Lippincott Williams & Wilkins, Philadelphia, USA; 2008
  • Beutler E, Lichtman MA. Williams hematology. McGraw-Hill, Inc; NewYork: 1995
  • Ihler GM, Tsang H. Erythrocyte carriers. Crit Rev Ther Drug Carrier Syst 1985;1(2):155-87
  • Muzykantov VR, Taylor RP. Attachment of biotinylated antibody to red blood cells: antigen-binding capacity of immunoerythrocytes and their susceptibility to lysis by complement. Anal Biochem 1994;223(1):142-8
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2(10):750-63
  • Eichler HG, Schneider W, Raberger G, et al. Erythrocytes as carriers for heparin. Res Exp Med 1986;186(6):407-12
  • Kruse C, James G, Freehauf C, Williams C. Methotrexate loaded erythrocytes carriers: optimization their formation, their characterization, and their pharmacological efficiency in treating hepatoma 129 ascites tumors in mice. Adv Biosci(series) 1987;67:137-44
  • Ito Y, Ogiso T, Iwaki M, Atago H. Encapsulation of human urokinase in rabbit erythrocytes and its disposition in the circulation system in rabbits. J Pharmacobiodyn 1987;10(10):550-6
  • Gautam S, Barna B, Chiang T, et al. Use of resealed erythrocytes as delivery system for C-reactive protein (CRP) to generate macrophage-mediated tumoricidal activity. J Biol Response Mod 1987;6(3):346-54
  • Magnani M, Giovine M, Fraternale A, et al. Red blood cells as a delivery system for AZT. Drug Deliv 1995;2(1):57-61
  • Rossi L, Brandi G, Malatesta M, et al. Effect of listeriolysin O-loaded erythrocytes on Mycobacterium avium replication within macrophages. J Antimicrob Chemother 2004;53(5):863-6
  • Beutler E, Kay A, Saven A, et al. Enzyme replacement therapy for Gaucher disease. Blood 1991;78(5):1183-9
  • Ninfali P, Rossi L, Baronciani L, et al. Acetaldehyde, ethanol and acetone concentrations in blood of alcohol-treated mice receiving aldehyde dehydrogenase-loaded erythrocytes. Alcohol Alcohol 1992;27(1):19-23
  • Ariga K, Kawakami K, Hill JP. Emerging pressure-release materials for drug delivery. Expert Opin Drug Deliv 2013;10(11):1465-9
  • Langer R. Drug delivery and targeting. Nature 1998;392(6679):5-10
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013;42(3):1147-235
  • Zhang L, Gu F, Chan J, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2007;83(5):761-9
  • Northfelt DW, Dezube BJ, Thommes JA, et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 1998;16(7):2445-51
  • Ariga K, Ji Q, Mori T, et al. Enzyme nanoarchitectonics: organization and device application. Chem Soc Rev 2013;42(15):6322-45
  • Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010;7(4):403-27
  • Kwant W, Seeman P. The erythrocyte ghost is a perfect osmometer. J Gen Physiol 1970;55(2):208-19
  • DeLoach J, Harris R, Ihler G. An erythrocyte encapsulator dialyzer used in preparing large quantities of erythrocyte ghosts and encapsulation of a pesticide in erythrocyte ghosts. Anal Biochem 1980;102(1):220-7
  • Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc Natl Acad Sci 1973;70(9):2663-6
  • Deloach J, Ihler G. A dialysis procedure for loading erythrocytes with enzymes and lipids. Biochim Biophys Acta 1977;496(1):136-45
  • Tajerzadeh H, Hamidi M. Evaluation of hypotonic preswelling method for encapsulation of enalaprilat in intact human erythrocytes. Drug Dev Ind Pharm 2000;26(12):1247-57
  • Franco R, Barker R, Weiner M. The nature and kinetics of red cell membrane changes during the osmotic pulse method of incorporating xenobiotics into viable red cells. Adv Biosci 1987;67(1):63-72
  • Jaitely V, Kanaujia P, Venkatesan N, et al. Resealed erythrocytes: drug carrier potentials and biomedical applications. Indian Drugs 1996;33(12):589-94
  • Deuticke B, Kim M, Zöllner C. The influence of amphotericin B on the permeability of mammalian erythrocytes to nonelectrolytes, anions and cations. Biochim Biophys Acta 1973;318(3):345-59
  • Kitao T, Hattori K, Takeshita M. Agglutination of leukemic cells and daunomycin entrapped erythrocytes with lectin in vitro and in vivo. Cell Mol Life Sci 1978;34(1):94-5
  • Zimmermann U. Jahresbericht der Kernforschungsanlage Julich GmbH. Nuclear Research Center Julich, Darmstadt, Germany; 1973. p. 55-8
  • Zimmermann U. Cellular drug-carrier systems and their possible targeting. John Wiley & Sons, New York; 1983
  • Kinosita K, Tsong T. Hemolysis of human erythrocytes by transient electric field. Proc Natl Acad Sci USA 1977;74(5):1923-7
  • Schriei S, Bensch K, Johnson M, Junga I. Energized endocytosis in human erythrocyte ghosts. J Clin Invest 1975;56(1):8-22
  • Tsong T, Kinosita K Jr. Use of voltage pulses for the pore opening and drug loading, and the subsequent resealing of red blood cells. Bibl Haematol 1985(51):108-14
  • Nicolau C, Gersonde K. Incorporation of inositol hexaphosphate into intact red blood cells. Naturwissenschaften 1979;66(11):563-6
  • Magnani M, Rossi L, D’ascenzo M, et al. Erythrocyte engineering for drug delivery and targeting. Biotechnol Appl Biochem 1998;28(1):1-6
  • Boyden SV. The adsorption of proteins on erythrocytes treated with tannic acid and subsequent hemagglutination by antiprotein sera. J Exp Med 1951;93(2):107-20
  • Page Faulk W, Houba V. Immunological reactions with chromic chloride-treated erythrocytes. J Immunol Methods 1973;3(1):87-98
  • Orr GA. The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J Biol Chem 1981;256(2):761-6
  • Bayer EA, Safars M, Wilchek M. Selective labeling of sulfhydryls and disulfides on blot transfers using avidin-biotin technology: studies on purified proteins and erythrocyte membranes. Anal Biochem 1987;161(2):262-71
  • Murciano J-C, Medinilla S, Eslin D, et al. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 2003;21(8):891-6
  • Corinti S, Chiarantini L, Dominici S, et al. Erythrocytes deliver Tat to interferon-γ-treated human dendritic cells for efficient initiation of specific type 1 immune responses in vitro. J Leukoc Biol 2002;71(4):652-8
  • Gaudreault R, Bellemare B, Lacroix J. Erythrocyte membrane-bound daunorubicin as a delivery system in anticancer treatment. Anticancer Res 1989;9(4):1201-5
  • Rossi NA, Constantinescu I, Kainthan RK, et al. Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials 2010;31(14):4167-78
  • Scott MD, Murad KL, Koumpouras F, et al. Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc Natl Acad Sci USA 1997;94(14):7566-71
  • Scott MD, Bradley AJ, Murad KL. Camouflaged blood cells: low-technology bioengineering for transfusion medicine? Transfus Med Rev 2000;14(1):53-63
  • Lindorfer MA, Hahn CS, Foley PL, Taylor RP. Heteropolymer-mediated clearance of immune complexes via erythrocyte CR1: mechanisms and applications. Immunol Rev 2001;183(1):10-24
  • Subramanian B, Marsh J. Mapping epitopes for 20 monoclonal antibodies to CR1. Clin Exp Immunol 2001;112(1):27-33
  • Krych-Goldberg M, Atkinson JP. Structure-function relationships of complement receptor type 1. Immunol Rev 2001;180(1):112-22
  • Taylor RP, Sutherland WM, Reist CJ, et al. Use of heteropolymeric monoclonal antibodies to attach antigens to the C3b receptor of human erythrocytes: a potential therapeutic treatment. Proc Natl Acad Sci USA 1991;88(8):3305-9
  • Muzykantov VR, Sakharov DV, Smirnov MD, et al. Immunotargeting of erythrocyte-bound streptokinase provides local lysis of a fibrin clot. Biochim Biophys Acta 1986;884(2):355-62
  • Müller M, Büchi L, Woodtli K, et al. Preparation and characterization of ‘heparinocytes’: erythrocytes with covalently bound low molecular weight heparin. FEBS Lett 2000;468(2):115-19
  • Gersh KC, Zaitsev S, Cines DB, et al. Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent. Blood 2011;117(18):4964-7
  • Gersh K, Zaitsev S, Muzykantov V, et al. The spatial dynamics of fibrin clot dissolution catalyzed by erythrocyte‐bound vs free fibrinolytics. J Thromb Haemost 2010;8(5):1066-74
  • Medof ME, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 1984;160(5):1558-78
  • Muzykantov V, Seregina N, Smirnov M. Fast lysis by complement and uptake by liver of avidin-carrying biotinylated erythrocytes. Int J Artif Organs 1992;15(10):622-7
  • Taylor RP, Reist C, Sutherland W, et al. In vivo binding and clearance of circulating antigen by bispecific heteropolymer-mediated binding to primate erythrocyte complement receptor. J Immunol 1992;148(8):2462-8
  • Taylor RP, Martin EN, Reinagel ML, et al. Bispecific monoclonal antibody complexes facilitate erythrocyte binding and liver clearance of a prototype particulate pathogen in a monkey model. J Immunol 1997;159(8):4035-44
  • Zaitsev S, Danielyan K, Murciano J-C, et al. Human complement receptor type 1–directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood 2006;108(6):1895-902
  • Zaitsev S, Spitzer D, Murciano J-C, et al. Targeting of a mutant plasminogen activator to circulating red blood cells for prophylactic fibrinolysis. J Pharmacol Exp Ther 2010;332(3):1022-31
  • Zaitsev S, Kowalska MA, Neyman M, et al. Targeting recombinant thrombomodulin fusion protein to red blood cells provides multifaceted thromboprophylaxis. Blood 2012;119(20):4779-85
  • Zaitsev S, Spitzer D, Murciano J-C, et al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood 2010;115(25):5241-8
  • Danielyan K, Ganguly K, Ding B-S, et al. Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator. Circulation 2008;118(14):1442-9
  • Armstead WM, Ganguly K, Kiessling JW, et al. Red blood cells-coupled tPA prevents impairment of cerebral vasodilatory responses and tissue injury in pediatric cerebral hypoxia/ischemia through inhibition of ERK MAPK activation. J Cerebral Blood Flow Metabol 2009;29(8):1463-74
  • Schwarzmaier SM, Kim S-W, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma 2010;27(1):121-30
  • Pisapia JM, Xu X, Kelly J, et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp Neurol 2012;233(1):357-63
  • Armstead WM, Ganguly K, Riley J, et al. Red blood cell-coupled tissue plasminogen activator prevents impairment of cerebral vasodilatory responses through inhibition of c-Jun-N-terminal kinase and potentiation of p38 mitogen-activated protein kinase after cerebral photothrombosis in the newborn pig. Pediatr Crit Care Med 2011;12(6):e369-75
  • Godfrin Y, Horand F, Franco R, et al. International seminar on the red blood cells as vehicles for drugs. Expert Opin Biol Ther 2012;12(1):127-33
  • Magnani M. Erythrocytes as carriers for drugs: the transition from the laboratory to the clinic is approaching. Expert Opin Biol Ther 2012;12(2):137-8
  • Hamidi M, Zarrin A, Foroozesh M, Mohammadi-Samani S. Applications of carrier erythrocytes in delivery of biopharmaceuticals. J Control Release 2007;118(2):145-60
  • Turrini F, Arese P, Yuan J, Low P. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem 1991;266(35):23611-17
  • Paulitschke M, Nash G, Anstee D, et al. Perturbation of red blood cell membrane rigidity by extracellular ligands. Blood 1995;86(1):342-8
  • Lynch WE, Sartiano GP, Ghaffar A. Erythrocytes as carriers of chemotherapeutic agents for targeting the reticuloendothelial system. Am J Hematol 1980;9(3):249-59
  • Jain S, Jain N. Engineered erythrocytes as a drug delivery system. Indian J Pharm Sci 1997;59(6):275-81
  • Sugai Y, Sugai K, Fuse A. Current status of bacterial contamination of autologous blood for transfusion. Transfus Apheresis Sci 2001;24(3):255-9
  • Heath TD, Fraley RT, Papahdjopoulos D. Antibody targeting of liposomes: cell specificity obtained by conjugation of F (ab’) 2 to vesicle surface. Science (New York, NY) 1980;210(4469):539-41
  • Martin FJ, Hubbell WL, Papahadjopoulos D. Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fab’fragments via disulfide bonds. Biochemistry 1981;20(14):4229-38
  • Singhal A, Bali A, Gupta C. Antibody-mediated targeting of liposomes to erythrocytes in the whole blood. Biochim Biophys Acta 1986;880(1):72-7
  • Agrawal AK, Singhal A, Gupta CM. Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem Biophys Res Commun 1987;148(1):357-61
  • Owais M, Varshney GC, Choudhury A, et al. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice. Antimicrob Agents Chemother 1995;39(1):180-4
  • Urbán P, Estelrich J, Cortés A, Fernàndez-Busquets X. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum infected versus non-infected red blood cells in vitro. J Control Release 2011;151(2):202-11
  • Urbán P, Estelrich J, Adeva A, et al. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res Lett 2011;6(1):1-9
  • Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 1995;13(12):527-37
  • Lejeune A, Moorjani M, Gicquaud C, et al. Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for daunorubicin. Anticancer Res 1994;14(3A):915-19
  • Moorjani M, Lejeune A, Gicquaud C, et al. Nanoerythrosomes, a new derivative of erythrocyte ghost II: identification of the mechanism of action. Anticancer Res 1996;16(5A):2831-6
  • Lejeune A, Poyet P, Gaudreault RC, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: III. Is phagocytosis involved in the mechanism of action? Anticancer Res 1997;17(5A):3599-603
  • Desilets J, Lejeune A, Mercer J, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res 2001;21(3):1741-8
  • Gaudreault R, François B. inventors; Polyethyleneglycol conjugated nanoerythrosomes, method of making same and use thereof. 1998
  • Pouliot R, Saint-Laurent A, Chypre C, et al. Spectroscopic characterization of nanoErythrosomes in the absence and presence of conjugated polyethyleneglycols: an FTIR and 31P-NMR study. Biochim Biophys Acta 2002;1564(2):317-24
  • Gupta N, Patel B, Ahsan F. Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: preparation and characterization. Pharm Res 2014;31(6):1553-65
  • Hu CMJ, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011;108(27):10980-5
  • Fang RH, Hu C-MJ, Zhang L. Nanoparticles disguised as red blood cells to evade the immune system. Expert Opin Biol Ther 2012;12(4):385-9
  • Chambers E, Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release 2004;100(1):111-19
  • Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med 2007;232(7):958-66
  • Anselmo AC, Gupta V, Zern BJ, et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood Cells. ACS Nano 2013;7(12):11129-37
  • Brähler M, Georgieva R, Buske N, et al. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett 2006;6(11):2505-9
  • Ahn S, Jung SY, Seo E, Lee SJ. Gold nanoparticle-incorporated human red blood cells (RBCs) for X-ray dynamic imaging. Biomaterials 2011;32(29):7191-9
  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 1999;99(9):2293-352
  • Kubaska S, Sahani DV, Saini S, et al. Dual contrast enhanced magnetic resonance imaging of the liver with superparamagnetic iron oxide followed by gadolinium for lesion detection and characterization. Clin Radiol 2001;56(5):410-15
  • Antonelli A, Sfara C, Manuali E, et al. Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine 2011;6(2):211-23
  • Allkemper T, Bremer C, Matuszewski L, et al. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits 1. Radiology 2002;223(2):432-8
  • Eisenberg AD, Conturo TE, Mitchell MR, et al. Enhancement of red blood cell proton relaxation with chromium labeling. Invest Radiol 1986;21(2):137-43
  • Eisenberg AD, Conturo TE, Price RR, et al. MRI enhancement of perfused tissues using chromium labeled red blood cells as an intravascular contrast agent. Invest Radiol 1989;24(10):742-53
  • Markov D, Boeve H, Gleich B, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 2010;55(21):6461-73
  • Hainfeld J, Slatkin D, Focella T, Smilowitz H. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 2006;79(939):248-53
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005;1(3):325-7
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev Columbus 2004;104(1):293-46
  • Mukherjee P, Bhattacharya R, Bone N, et al. Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 2007;5(4):1-13
  • Niidome T, Yamagata M, Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006;114(3):343-7
  • Hirsch LR, Halas NJ, West JL. Whole-blood immunoassay facilitated by gold nanoshell-conjugate antibodies. Methods Mol Biol 2005;303:101-11
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006;6(4):662-8
  • Verma A, Uzun O, Hu Y, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 2008;7(7):588-95
  • Amstad E, Kohlbrecher J, Müller E, et al. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 2011;11(4):1664-70
  • Troutman TS, Leung SJ, Romanowski M. Light – induced content release from plasmon – resonant liposomes. Adv Mater 2009;21(22):2334-8
  • Chen Y, Bose A, Bothun GD. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano 2010;4(6):3215-21
  • Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics. Laser Photonics Rev 2008;2(3):136-59
  • Delcea M, Sternberg N, Yashchenok AM, et al. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. ACS Nano 2012;6(5):4169-80
  • Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials 2009;21(48):4880-910
  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008;41(12):1578-86
  • Urban AS, Pfeiffer T, Fedoruk M, et al. Single-step injection of gold nanoparticles through phospholipid membranes. ACS Nano 2011;5(5):3585-90
  • Lippert JL, Gorczyca LE, Meiklejohn G. A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts. Biochim Biophys Acta BBABiomembr 1975;382(1):51-7
  • Wang F, Liu X, Willner I. Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications. Adv Mater 2013;25(3):349-77
  • Kolesnikova TA, Skirtach AG, Möhwald H. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles. Expert Opin Drug Deliv 2013;10(1):47-58
  • Caruso F, Caruso RA, Möhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998;282(5391):1111-14
  • Neu B, Voigt A, Mitlöhner R, et al. Biological cells as templates for hollow microcapsules. J Microencapsul 2001;18(3):385-95
  • Deshmukh PK, Ramani KP, Singh SS, et al. Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications. J Control Release 2013;166(3):294-306
  • Ariga K, Yamauchi Y, Rydzek G, et al. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 2014;43(1):36-68
  • De Cock LJ, De Koker S, De Geest BG, et al. Polymeric multilayer capsules in drug delivery. Angew Chem Int Ed 2010;49(39):6954-73
  • Luo R, Mutukumaraswamy S, Venkatraman SS, Neu B. Engineering of erythrocyte-based drug carriers: control of protein release and bioactivity. J Mater Sci 2012;23(1):63-71
  • Shaillender M, Luo R, Venkatraman SS, Neu B. Layer-by-layer microcapsules templated on erythrocyte ghost carriers. Int J Pharm 2011;415(1):211-17
  • Mohandas N, Chasis J. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 1993;30(3):171-92
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. J Control Release 2007;121(1):3-9
  • Fung Y, Cowin S. Biomechanics: mechanical properties of living tissues. 2nd edition. Springer; New York: 1994
  • Doshi N, Zahr AS, Bhaskar S, et al. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci USA 2009;106(51):21495-9
  • Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2(4):249-55
  • Fox ME, Szoka FC, Fréchet JMJ. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 2009;42(8):1141-51
  • Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009;8(1):15-23
  • Simone EA, Dziubla TD, Muzykantov VR. Polymeric carriers: role of geometry in drug delivery. Expert Opin Drug Del 2008;5(12):1283-300
  • Huo D, Deng S, Li L, Ji J. Studies on the poly(lactic-co-glycolic) acid microspheres of cisplatin for lung-targeting. Int J Pharm 2005;289(1–2):63-7
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006;103(13):4930-4
  • Muro S, Garnacho C, Champion JA, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 2008;16(8):1450-8
  • Perry JL, Herlihy KP, Napier ME, DeSimone JM. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 2011;44(10):990-8
  • Merkel TJ, Jones SW, Herlihy KP, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci USA 2011;108(2):586-91
  • Haghgooie R, Toner M, Doyle PS. Squishy non–spherical hydrogel microparticles. Macromol Rapid Commun 2010;31(2):128-34
  • Jain S, Bates FS. On the origins of morphological complexity in block copolymer surfactants. Science 2003;300(5618):460-4
  • Gao Y, Li X, Hong L, Liu G. Mesogen-driven formation of triblock copolymer cylindrical micelles. Macromolecules 2012;45(3):1321-30
  • Kim TH, Mount CW, Dulken BW, et al. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model. Mol Pharm 2011;9(1):135-43
  • Beutler E, Dale G, Guinto D, Kuhl W. Enzyme replacement therapy in Gaucher’s disease: preliminary clinical trial of a new enzyme preparation. Proc Natl Acad Sci USA 1977;74(10):4620-3
  • Eichler H, Gasic S, Bauer K, et al. In vivo clearance of antibody-sensitized human drug carrier erythrocytes. Clin Pharm Ther 1986;40(3):300-3
  • Eichler H, Rameis H, Bauer K, et al. Survival of gentamicin - loaded carrier erythrocytes in healthy human volunteers. Eur J Clin Invest 1986;16(1):39-42
  • Rossi L, Serafini S, Cenerini L, et al. Erythrocyte - mediated delivery of dexamethasone in patients with chronic obstructive pulmonary disease. Biotechnol Appl Biochem 2001;33(2):85-9
  • Bossa F, Latiano A, Rossi L, et al. Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: a randomized, controlled study. Am J Gastroenterol 2008;103(10):2509-16
  • Kravtzoff R, Colombat P, Desbois I, et al. Tolerance evaluation of L-asparaginase loaded in red blood cells. Eur J Clin Pharmacol 1996;51(3-4):221-5
  • Kravtzoff R, Ropars C, Desbois I, et al. Improved pharmacodynamics of L-asparaginase-loaded in human red blood cells. Eur J Clin Pharmacol 1996;49(6):465-70
  • Del C, Batlle AM, Bustos NL, et al. Enzyme replacement therapy in porphyrias—IV. First successful human clinical trial of δ-aminolevulinate dehydratase-loaded erythrocyte ghosts. Int J Biochem 1983;15(10):1261-5
  • Bax B, Bain M, Fairbanks L, et al. In vitro and in vivo studies with human carrier erythrocytes loaded with polyethylene glycol - conjugated and native adenosine deaminase. Br J Haematol 2000;109(3):549-54
  • Bax B, Bain M, Fairbanks L, et al. Carrier erythrocyte entrapped adenosine deaminase therapy in adenosine deaminase deficiency. Purine Pyrimidine Metabol Man X 2002;486:47-50
  • Singhal A, Gupta C. Antibody-mediated targeting of liposomes to red cells in vivo. FEBS Lett 1986;201(2):321-6
  • Singhal A, Bali A, Gupta CM. Antibody-mediated targeting of liposomes to erythrocytes in the whole blood. Biochim Biophys Acta 1986;880(1):72-7
  • Chandra S, Agrawal AK, Gupta C. Chloroquine delivery to erythrocytes in Plasmodium berghei-infected mice using antibody-bearing liposomes as drug vehicles. J Biosci 1991;16(3):137-44
  • Désilets J, Lejeune A, Mercer J, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res 2000;21(3B):1741-7
  • Gaudreault RC, Gicquaud C, Poyet P. Nanoerythrosome as bioactive agent carrier. Google Patents 1997
  • Bellemare F, Gaudreault R. Polyethyleneglycol conjugated nanoerythrosomes, method of making same and use thereof. Google Patents 1998
  • Moorjani M, Lejeune A, Gicquaud C, et al. Nanoerythrosomes, a new derivative of erythrocyte ghost II: identification of the mechanism of action. Anticancer Res 1995;16(5A):2831-6
  • Antonelli A, Sfara C, Mosca L, et al. New biomimetic constructs for improved in vivo circulation of superparamagnetic nanoparticles. J Nanosci Nanotechnol 2008;8(5):2270-8
  • Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011;63(1):24-46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.