456
Views
80
CrossRef citations to date
0
Altmetric
Review

Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle

, , , , , , , , , , , , & show all

Bibliography

  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3(1):16-20
  • Karimi M, Avci P, Mobasseri R, et al. The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J Nanopart Res 2013;15(5):1-14
  • Jahromi MAM, Karimi M, Azadmanesh K, et al. The effect of chitosan-tripolyphosphate nanoparticles on maturation and function of dendritic cells. Comp Clin Pathol 2014;23:1421-7
  • Karimi M, Avci P, Ahi M, et al. Evaluation of chitosan-tripolyphosphate nanoparticles as a p-shRNA delivery vector: formulation, optimization and cellular uptake study. J Nanopharm Drug Deliv 2013;1(3):266-78
  • Madani SY, Tan A, Dwek M, et al. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine 2012;7:905
  • Peretz S, Regev O. Carbon nanotubes as nanocarriers in medicine. Curr Opin Colloid Interface Sci 2012;17(6):360-8
  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, et al. Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 2008(4):459-61
  • Ebbesen T, Ajayan P. Large-scale synthesis of carbon nanotubes. Nature 1992;358(6383):220-2
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354(6348):56-8
  • Hernadi K, Fonseca A, Nagy J, et al. Catalytic synthesis and purification of carbon nanotubes. Synth Met 1996;77(1):31-4
  • Popov VN. Carbon nanotubes: properties and application. Mater Sci Eng R Rep 2004;43(3):61-102
  • Gogotsi Y, Presser V. Carbon nanomaterials. Taylor & Francis, New York; NY; 2013; 2nd Edition: p. 529
  • Hu H, Bhowmik P, Zhao B, et al. Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration. Chem Phys Lett 2001;345(1):25-8
  • Dresselhaus M, Jorio A, Souza Filho A, et al. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos Trans A Math Phys Eng Sci 2010;368(1932):5355-77
  • Lu W, Zu M, Byun JH, et al. State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 2012;24(14):1805-33
  • Sinnott SB, Andrews R. Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 2001;26(3):145-249
  • Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes – the route toward applications. Science 2002;297(5582):787-92
  • Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 1997;277(5334):1971-5
  • Chhowalla M, Unalan HE. Cathodic arc discharge for synthesis of carbon nanoparticles. In: Plasma processing of nanomaterials. Taylor & Francis, New York; NY; 2011. p. 147
  • Ishigami M, Cumings J, Zettl A, et al. A simple method for the continuous production of carbon nanotubes. Chem Phys Lett 2000;319(5):457-9
  • Yousef S, Khattab A, Osman T, et al. Fully automatic system for producing carbon nanotubes (CNTs) by using arc-discharge technique multi electrodes. Innovative Engineering Systems (ICIES), 2012 First International Conference on; 2012: IEEE 2012. p. 86-90
  • Zhang Y-L, Hou P-X, Liu C, et al. De-bundling of single-wall carbon nanotubes induced by an electric field during arc discharge synthesis. Carbon 2014;74:370-3
  • Sano N, Nakano J, Kanki T. Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen. Carbon 2004;42(3):686-8
  • Vittori Antisari M, Marazzi R, Krsmanovic R. Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 2003;41(12):2393-401
  • Imasaka K, Kanatake Y, Ohshiro Y, et al. Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water. Thin Solid Films 2006;506:250-4
  • Zhu H, Li X, Jiang B, et al. Formation of carbon nanotubes in water by the electric-arc technique. Chem Phys Lett 2002;366(5):664-9
  • Wang S-D, Chang M-H, Lan KM-D, et al. Synthesis of carbon nanotubes by arc discharge in sodium chloride solution. Carbon 2005;43(8):1792-5
  • Chaudhary K, Ali J, Yupapin P. Growth of small diameter multi-walled carbon nanotubes by arc discharge process. Chinese Phys B 2014;23(3):035203
  • Su Y, Wei H, Li T, et al. Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge. Mater Res Bull 2014;50:23-5
  • Bota P, Dorobantu D, Boerasu I, et al. Synthesis of single-wall carbon nanotubes by excimer laser ablation. Surf Eng Appl Electrochem 2014;50(4):294-9
  • Iijima S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 1980;50(3):675-83 10.1155/2013/785160
  • Maser WK, Benito AM, Munoz E, et al. Production of carbon nanotubes by CO2-laser evaporation of various carbonaceous feedstock materials. Nanotechnology 2001;12(2):147 10.1088/0957-4484/12/2/315
  • Mubarak N, Abdullah E, Jayakumar N, et al. An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 2014;20(4):1186-97
  • Rastogi V, Yadav P, Bhattacharya SS, et al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv 2014;2014:670815
  • Jose-Yacaman M, Miki-Yoshida M, Rendon L, et al. Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 1993;62(2):202-4
  • Qin L, Zhou D, Krauss A, et al. Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett 1998;72(26):3437-9
  • Kong J, Soh HT, Cassell AM, et al. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998;395(6705):878-81 10.1038/27632
  • Fonseca A, Hernadi K, Nagy J, et al. Optimization of catalytic production and purification of buckytubes. J Mol Cat A Chem 1996;107(1):159-68
  • Sahoo SC, Mohapatra DR, Lee H-J, et al. Carbon nanoflake growth from carbon nanotubes by hot filament chemical vapor deposition. Carbon 2014;67:704-11 10.1016/j.carbon.2013.10.062
  • Lisi N, Giorgi R, Re M, et al. Carbon nanowall growth on carbon paper by hot filament chemical vapour deposition and its microstructure. Carbon 2011;49(6):2134-40
  • Bouanis FZ, Baraton L, Huc V, et al. High-quality single-walled carbon nanotubes synthesis by hot filament CVD on Ru nanoparticle catalyst. Thin Solid Films 2011;519(14):4594-7
  • Pastorková K, Jesenák K, Kadlečíková M, et al. The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite). Appl Surf Sci 2012;258(7):2661-6
  • Sanchez-Valencia JR, Dienel T, Gröning O, et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014;512(7512):61-4
  • Swierczewska M, Rusakova I, Sitharaman B. Gadolinium and europium catalyzed growth of single-walled carbon nanotubes. Carbon 2009;47(13):3139-42
  • Melechko AV, Merkulov VI, McKnight TE, et al. Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 2005;97(4):041301
  • Saghafi M, Mahboubi F, Mohajerzadeh S, et al. Preparation of vertically aligned carbon nanotubes and their electrochemical performance in supercapacitors. Synth Met 2014;195:252-9
  • Löffler R, Häffner M, Visanescu G, et al. Optimization of plasma-enhanced chemical vapor deposition parameters for the growth of individual vertical carbon nanotubes as field emitters. Carbon 2011;49(13):4197-203
  • Jeong KY, Jung HK, Lee HW. Effective parameters on diameter of carbon nanotubes by plasma enhanced chemical vapor deposition. Trans Nonferrous Metals Soc China 2012;22:s712-s16
  • Fleaca CT, Le Normand F. Ni-catalysed carbon nanotubes and nanofibers assemblies grown on TiN/Si (100) substrates using hot-filaments combined with dc plasma CVD. Physica E Low Dimensional Syst Nanostruct 2014;56:435-40
  • Wang B, Tang X, Xu X. Growth of carbon nanotubes and nanowires from amorphous carbon films by plasma-enhanced hot filament chemical vapor deposition. J Phys Chem Solids 2013;74(3):441-5
  • Wang H, Moore JJ. Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 2012;50(3):1235-42
  • Dervishi E, Biris AR, Driver JA, et al. Low-temperature (150° C) carbon nanotube growth on a catalytically active iron oxide–graphene nano-structural system. J Catal 2013;299:307-15
  • Lee CJ, Park J, Han S, et al. Growth and field emission of carbon nanotubes on sodalime glass at 550 C using thermal chemical vapor deposition. Chem Phys Lett 2001;337(4):398-402
  • Park YS, Yi J, Lee J. The characteristics of carbon nanotubes grown at low temperature for electronic device application. Thin Solid Films 2013;546:81-4
  • Lee J-H, Hong B, Park YS. The electrical and structural properties of carbon nanotubes grown by microwave plasma-enhanced chemical vapor deposition method for organic thin film transistor. Thin Solid Films 2013;546:77-80
  • Hata K, Futaba DN, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004;306(5700):1362-4
  • Wang G, Chen J, Tian Y, et al. Water assisted synthesis of double-walled carbon nanotubes with a narrow diameter distribution from methane over a Co–Mo/MgO catalyst. Catal Today 2012;183(1):26-33
  • Smajda R, Andresen J, Duchamp M, et al. Synthesis and mechanical properties of carbon nanotubes produced by the water assisted CVD process. Physica Status Solidi (B) 2009;246(11-12):2457-60
  • Yamada T, Maigne A, Yudasaka M, et al. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett 2008;8(12):4288-92
  • Ren F, Kanaan SA, Majewska MM, et al. Increase in the yield of (and selective synthesis of large-diameter) single-walled carbon nanotubes through water-assisted ethanol pyrolysis. J Catal 2014;309:419-27
  • Cui X, Wei W, Chen W. Lengthening and thickening of multi-walled carbon nanotube arrays grown by chemical vapor deposition in the presence and absence of water. Carbon 2010;48(10):2782-91
  • Kim Y, Song W, Lee SY, et al. Growth of millimeter-scale vertically aligned carbon nanotubes by microwave plasma chemical vapor deposition. Jpn J Appl Phys 2010;49(8R):085101
  • Qi J, Zhang L, Cao J, et al. Effects of oxygen on growth of carbon nanotubes prospered by PECVD. Mater Res Bull 2014;49:66-70
  • Wen Q, Qian W, Wei F, et al. CO2-assisted SWNT growth on porous catalysts. Chem Mater 2007;19(6):1226-30
  • Murakami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett 2004;385(3):298-303
  • Kumar M, Ando Y. A simple method of producing aligned carbon nanotubes from an unconventional precursor–Camphor. Chem Phys Lett 2003;374(5):521-6
  • Huczko A. Synthesis of aligned carbon nanotubes. Appl Phys A 2002;74(5):617-38
  • Reit R, Nguyen J, Ready WJ. Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates. Electrochim Acta 2013;91:96-100
  • Rao CN, Govindaraj A. Carbon nanotubes from organometallic precursors. Acc Chem Res 2002;35(12):998-1007
  • Cheng H, Li F, Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 1998;72(25):3282-4
  • Jasti R, Bertozzi CR. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem Phys Lett 2010;494(1):1-7
  • Magrez A, Seo JW, Smajda R, et al. Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials 2010;3(11):4871-91
  • Taghdisi SM, Lavaee P, Ramezani M, et al. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm 2011;77(2):200-6
  • Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2006;2(1):47-52
  • Marchesan S, Kostarelos K, Bianco A, et al. The winding road for carbon nanotubes in nanomedicine. Mater Today 2014
  • Sitko R, Zawisza B, Malicka E. Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions. TrAC Trends Anal Chem 2012;37:22-31
  • He H, Pham-Huy LA, Dramou P, et al. Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int 2013;2013
  • Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 2013;65(15):1964-2015
  • Plisko TV, Bildyukevich AV. Debundling of multiwalled carbon nanotubes in N, N-dimethylacetamide by polymers. Colloid Polym Sci 2014;292(10):2571-80
  • Islam M, Rojas E, Bergey D, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 2003;3(2):269-73
  • Moore VC, Strano MS, Haroz EH, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 2003;3(10):1379-82
  • Chen RJ, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 2001;123(16):3838-9
  • Granite M, Radulescu A, Pyckhout-Hintzen W, et al. Interactions between block copolymers and single-walled carbon nanotubes in aqueous solutions: a small-angle neutron scattering study. Langmuir 2010;27(2):751-9
  • Duch MC, Budinger GS, Liang YT, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 2011;11(12):5201-7
  • Wang X, Xia T, Duch MC, et al. Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett 2012;12(6):3050-61
  • Choudhary U, Northrop BH. Rotaxanes and biofunctionalized pseudorotaxanes via thiol-maleimide click chemistry. Org Lett 2012;14(8):2082-5
  • Wang L, Shi J, Zhang H, et al. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 2013;34(1):262-74
  • Modi CD, Patel SJ, Desai AB, et al. Functionalization and evaluation of PEGylated carbon nanotubes as novel drug delivery for methotrexate. J Appl Pharm Sci 2011;1:103-8
  • Mehra NK, Mishra V, Jain N. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 2014;35(4):1267-83
  • Wu Z, Tang L-J, Zhang X-B, et al. Aptamer-modified nanodrug delivery systems. ACS Nano 2011;5(10):7696-9
  • Chou SG, Plentz F, Jiang J, et al. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys Rev Lett 2005;94(12):127402
  • Enyashin AN, Gemming S, Seifert G. DNA-wrapped carbon nanotubes. Nanotechnology 2007;18(24):245702
  • Das BK, Tlili C, Badhulika S, et al. Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: picomolar level detection of adenosine triphosphate. Chem Commun 2011;47(13):3793-5
  • Star A, Steuerman DW, Heath JR, et al. Starched carbon nanotubes. Angew Chem Int Ed Engl 2002;41(14):2508-12
  • Kim O-K, Je J, Baldwin JW, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc 2003;125(15):4426-7
  • Xie Y, Soh A. Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater Lett 2005;59(8):971-5
  • Numata M, Asai M, Kaneko K, et al. Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (beta-1, 3-glucans). J Am Chem Soc 2005;127(16):5875-84
  • Chambers G, Carroll C, Farrell GF, et al. Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett 2003;3(6):843-6
  • He J-L, Yang Y, Yang X, et al. Beta-cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin. Sens Actuators B Chem 2006;114(1):94-100
  • Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2002;2(1):25-8
  • Bhoi VI, Imae T, Ujihara M, et al. Surface immobilization of carbon nanotubes by beta-cyclodextrins and their inclusion ability. J Nanosci Nanotechnol 2013;13(4):2604-12
  • Karadas N, Ozkan SA. Electrochemical preparation of sodium dodecylsulfate doped over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application on sensitive and selective determination of anticancer drug: pemetrexed. Talanta 2014;119:248-54
  • Popp BV, Miles DH, Smith JA, et al. Stabilization and functionalization of single-walled carbon nanotubes with polyvinylpyrrolidone copolymers for applications in aqueous media. J Polym Sci Part A Polym Chem 2015;53:337-43
  • Kayatin MJ, Davis VA. In situ polymerization functionalization of single-walled carbon nanotubes with polystyrene. J Polym Sci Part A Polym Chem 2013;51(17):3716-25
  • Sahmetlioglu E, Yilmaz E, Aktas E, et al. Polypyrrole/multi-walled carbon nanotube composite for the solid phase extraction of lead (II) in water samples. Talanta 2014;119:447-51
  • Wu Y, Guo Z, Feng Y. Dispersion of single-walled carbon nanotubes in aqueous solution with a thermo-responsive pentablock terpolymer. Colloid Polym Sci 2014;292(2):281-9
  • Moradian H, Fasehee H, Keshvari H, et al. Poly (ethyleneimine) functionalized carbon nanotubes as efficient nano-vector for transfecting mesenchymal stem cells. Colloids Surf B Biointerfaces 2014;122:115-25
  • Bagheri H, Ayazi Z, Es’haghi A, et al. Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides. J Chromatogr A 2012;1222:13-21
  • Nabid MR, Sedghi R, Bagheri A, et al. Preparation and application of poly (2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction. J Hazard Mater 2012;203:93-100
  • Yan J, Ni T, Zou F, et al. Towards optimization of functionalized single-walled carbon nanotubes adhering with poly (3-hexylthiophene) for highly efficient polymer solar cells. Diamond Related Materials 2014;41:79-83
  • Kueseng P, Thammakhet C, Thavarungkul P, et al. Multiwalled carbon nanotubes/cryogel composite, a new sorbent for determination of trace polycyclic aromatic hydrocarbons. Microchem J 2010;96(2):317-23
  • Liu Z, Sun X, Nakayama-Ratchford N, et al. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007;1(1):50-6
  • Craig M, Bordes R, Holmberg K. Polypeptide multilayer self-assembly and enzymatic degradation on tailored gold surfaces studied by QCM-D. Soft Matter 2012;8(17):4788-94
  • Ling X, Wei Y, Zou L, et al. Functionalization and dispersion of multiwalled carbon nanotubes modified with poly-l-lysine. Colloids Surf A Physicochem Eng Asp 2014;443:19-26
  • Hashida Y, Tanaka H, Zhou S, et al. Photothermal ablation of tumor cells using a single-walled carbon nanotube–peptide composite. J Control Release 2014;173:59-66
  • Iancu C, Mocan L, Bele C, et al. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin. Int J Nanomedicine 2011;6:129
  • Choi T, Kim SH, Lee CW, et al. Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens Bioelectron 2015;63:325-30
  • Favvas EP, Nitodas SF, Stefopoulos AA, et al. High purity multi-walled carbon nanotubes: preparation, characterization and performance as filler materials in co-polyimide hollow fiber membranes. Separ Purif Tech 2014;122:262-9
  • Mubarak N, Wong J, Tan K, et al. Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J Mol Cat B Enzymatic 2014;107:124-31
  • Bortolamiol T, Lukanov P, Galibert A-M, et al. Double-walled carbon nanotubes: quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening. Carbon 2014;78:79-90
  • Sahoo NG, Bao H, Pan Y, et al. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 2011;47(18):5235-7
  • Mugadza T, Nyokong T. Covalent linking of ethylene amine functionalized single-walled carbon nanotubes to cobalt (II) tetracarboxyl-phthalocyanines for use in electrocatalysis. Synth Met 2010;160(19):2089-98
  • Coccini T, Roda E, Sarigiannis D, et al. Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 2010;269(1):41-53
  • Tangestaninejad S, Moghadam M, Mirkhani V, et al. Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese (III) salophen supported on multi-wall carbon nanotubes. Appl Cat A Gen 2010;381(1):233-41
  • Rahimpour A, Jahanshahi M, Khalili S, et al. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 2012;286:99-107
  • Amiri A, Maghrebi M, Baniadam M, et al. One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl Surf Sci 2011;257(23):10261-6
  • Vázquez E, Prato M. Functionalization of carbon nanotubes for applications in materials science and nanomedicine. Pure Appl Chem 2010;82(4):853-61
  • Mulvey JJ, Feinberg EN, Alidori S, et al. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes. Int J Nanomedicine 2014;9:4245
  • Zardini HZ, Amiri A, Shanbedi M, et al. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B Biointerfaces 2012;92:196-202
  • Polo-Luque M, Simonet B, Valcarcel M. Functionalization and dispersion of carbon nanotubes in ionic liquids. TrAC Trends Anal Chem 2013;47:99-110
  • Zhao J, Su Y, Yang Z, et al. Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 2013;58:92-8
  • Potgieter H, Moosa AA, Mohammad MI, et al. Carbon nanotubes synthesis via arc-discharge with a yttria catalyst
  • Fang L, Sheng L, An K, et al. Effect of adding W to Fe catalyst on the synthesis of SWCNTs by arc discharge. Physica E Low Dimensional Syst Nanostruct 2013;50:116-21
  • Su Y, Zhou P, Zhao J, et al. Large-scale synthesis of few-walled carbon nanotubes by DC arc discharge in low-pressure flowing air. Mater Res Bull 2013;48(9):3232-5
  • Yousef S, Khattab A, Osman T, et al. Effects of increasing electrodes on CNTs yield synthesized by using arc-discharge technique. J Nanomater 2013;2013:4
  • Tripathi G, Tripathi B, Sharma M, et al. A comparative study of arc discharge and chemical vapor deposition synthesized carbon nanotubes. Int J Hydrogen Energy 2012;37(4):3833-8 10.1016/j.mattod.2014.07.009
  • Kim YA, Muramatsu H, Hayashi T, et al. Catalytic metal-free formation of multi-walled carbon nanotubes in atmospheric arc discharge. Carbon 2012;50(12):4588-95
  • Zhao J, Wei L, Yang Z, et al. Continuous and low-cost synthesis of high-quality multi-walled carbon nanotubes by arc discharge in air. Physica E Low Dimensional Syst Nanostruct 2012;44(7):1639-43
  • Wu Y, Zhang T, Zhang F, et al. In situ synthesis of graphene/single-walled carbon nanotube hybrid material by arc-discharge and its application in supercapacitors. Nano Energy 2012;1(6):820-7
  • Su Y, Zhang Y, Wei H, et al. Length-controlled synthesis of single-walled carbon nanotubes by arc discharge with variable cathode diameters. Physica E Low Dimensional Syst Nanostruct 2012;44(7):1548-51
  • Liang F, Shimizu T, Tanaka M, et al. Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure. Diamond Related Materials 2012;30:70-6
  • Zhang Y. Synthesis of few-walled carbon nanotube–Rh nanoparticles by arc discharge: effect of selective oxidation. Mater Charact 2012;68:102-9
  • Li L, Li F, Liu C, et al. Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge. Carbon 2005;43(3):623-9
  • Cai X, Cong H, Liu C. Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon 2012;50(8):2726-30
  • Su J-S. Investigation on carbon nanotube growth using one-pulse discharge with shield. J Nanoeng Nanosyst 2012;266:175-80
  • Kia KK, Bonabi F. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design. Rev Sci Instrum 2012;83(12):123907
  • Takekoshi K, Kizu T, Aikawa S, et al. One-step synthesis of metal-encapsulated carbon nanotubes by pulsed arc discharge in water. e-J Surf Sci Nanotechnol 2012;10:414-16
  • Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science 1996;273(5274):483-7
  • Nikolaev P. Catalytic growth of single-walled nanotubes by laser vaporization. Masters Thesis Rice University; 1996. Available from: http://hdl. handle. net/1911/14101
  • Ramanathan T, Fisher F, Ruoff R, et al. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 2005;17(6):1290-5
  • Gabriel G, Sauthier G, Fraxedas J, et al. Preparation and characterisation of single-walled carbon nanotubes functionalised with amines. Carbon 2006;44(10):1891-7
  • Jiang K, Schadler LS, Siegel RW, et al. Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 2004;14(1):37-9
  • Santangelo S, Piperopoulos E, Fazio E, et al. A safer and flexible method for the oxygen functionalization of carbon nanotubes by nitric acid vapors. Appl Surf Sci 2014;303:446-55
  • Mallakpour S, Zadehnazari A. A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Prog Org Coat 2014;77(3):679-84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.