1,927
Views
196
CrossRef citations to date
0
Altmetric
Review

Calcium carbonate nanoparticles as cancer drug delivery system

, , , &

Bibliography

  • Zhang J, Lan CQ, Post M, et al. Design of nanoparticles as drug carriers for cancer therapy. Cancer Genomics. Proteomics 2006;3:147-57
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19:311-30
  • Dizaj SM. Preparation and study of vitamin a palmitate microemulsion drug delivery system and investigation of co-surfactant effect. J Nanostructure in Chem 2013;3:1-6
  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, et al. Antimicrobial activity of the metals and metal oxides nanoparticles. Mater Sci Eng C 2014;44:278-84
  • Adibkia K, Barzegar-Jalali M, Maheri-Esfanjani H, et al. Physicochemical characterization of naproxen solid dispersions prepared via spray drying technology. Powder Technol 2013;246:448-55
  • Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Let 2014;9:1-9
  • Aouada FA, de Moura MR, Orts WJ, et al. Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J mater sci 2010;45:4977-85
  • Singh B, Sharma D, Gupta A. In vitro release dynamics of thiram fungicide from starch and poly (methacrylic acid)-based hydrogels. J Hazard Mater 2008;154:278-86
  • Kumar M. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 2000;3:234-58
  • Åkerman ME, Chan WC, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Nat Acad Sci 2002;99:12617-21
  • Itokazu M, Sugiyama T, Ohno T, et al. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res 1998;39:536-8
  • Paul W, Sharma CP. Ceramic drug delivery: A perspective. J Biomater App 2003;17:253-64
  • Ginebra M, Traykova T, Planell J. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 2006;113:102-10
  • Paciotti GF, Kingston DG, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor targeted drug delivery vectors. Drug Dev Res 2006;67:47-54
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674-9
  • Anglin EJ, Cheng L, Freeman WR, et al. Porous silicon in drug delivery devices and materials. Adv Drug Del Rev 2008;60:1266-77
  • Jain TK, Morales MA, Sahoo SK, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2005;2:194-205
  • Li Y, Liu D, Ai H, et al. Biological evaluation of layered double hydroxides as efficient drug vehicles. Nanotechnol 2010;21:105101
  • Fadeel B, Garcia-Bennett AE. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Del Rev 2010;62:362-74
  • Moreno-Vega AI, Gomez-Quintero T, Nunez-Anita RE, et al. Polymeric and ceramic nanoparticles in biomedical applications. J Nanotechnol 2012;2012:1-10
  • Huang G, Gao J, Hu Z, et al. Controlled drug release from hydrogel nanoparticle networks. J Control Release 2004;94:303-11
  • Barzegar-Jalali M. Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci 2008;11:167-77
  • Jelvehgari M, Rashidi MR, Samadi H. Mucoadhesive and drug release properties of benzocaine gel. Iran J Pharm Sci 2006;2:185-94
  • Yang L, Sheldon BW, Webster TJ. Nanophase ceramics for improved drug delivery. Am Ceram Soc Bull 2010;89:24-31
  • Zhou C, Chen T, Wu C, et al. Aptamer CaCO3 nanostructures: A facile, pH-responsive, specific platform for targeted anticancer theranostics. Chem An Asian J 2014;10:166-71
  • Bala H, Zhang Y, Ynag H, et al. Preparation and characteristics of calcium carbonate/silica nanoparticles with core-shell structure. Colloids Surf Physicochem Eng Aspects 2007;294:8-13
  • Peng C, Zhao Q, Gao C. Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloids Surf Physicochem Eng Aspects 2010;353:132-9
  • Wang C, He C, Tong Z, et al. Combination of adsorption by porous CaCO3microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. Int J Pharm 2006;308:160-7
  • Wei W, Ma GH, Hu G, et al. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J Am Chem Soc 2008;130:15808-10
  • Zhao Q, Han B, Wang Z, et al. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: Doxorubicin loading and in vitro and in vivo studies. Nanomed Nanotechnol Biol Med 2007;3:63-74
  • Adibkia K, Barzegar-Jalali M, Javadzadeh Y, et al. A review on the porous adsorbents in drug delivery systems. 2012;18:103-18
  • Ohgushi H, Okumura M, Yoshikawa T, et al. Bone formation processin porous calcium carbonate and hydroxyapatite. J Biomed Mater Res 1992;26:885-95
  • Huang S, Chen JC, Hsu CW, et al. Effects of nano calcium carbonate and nano calcium citrate on toxicity in icr mice and on bone mineral density in an ovariectomized mice model. Nanotechnol 2009;20:1-7
  • Biradar S, Ravichandran P, Gopikrishnan R, et al. Calcium carbonate nanoparticles: Synthesis, characterization and biocompatibility. J nanosci and nanotechnol 2011;11:6868-74
  • Zhang Y, Ma P, Wang Y, et al. Biocompatibility of porous spherical calcium carbonate microparticles on hela cells. World J Nano Sci Eng 2012;2:25-31
  • Addadi L, Raz S, Weiner S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 2003;15:959-70
  • Addadi L, Weiner S. Biomineralization: a pavement of pearl. Nature 1997;389:912-15
  • Svenskaya Y, Parakhonskiy B, Haase A, et al. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys Chem 2013;182:11-15
  • Kirboga S, Oner M. Effect of the experimental parameters on calcium carbonate precipitation. Chem Eng 2013;32:2119-24
  • Griesshaber E, Schmahl WW, Neuser R, et al. Crystallographic texture and microstructure of terebratulide brachiopod shell calcite: An optimized materials design with hierarchical architecture. Am Mineral 2007;92:722-34
  • Küther J, Seshadri R, Knoll W, et al. Templated growth of calcite, vaterite and aragonite crystals onself-assembled monolayers of substituted alkylthiols on gold. J Mater Chem 1998;8:641-50
  • Leung Y, Chan C, Ng A, et al. Antibacterial activity of zno nanoparticles with a modified surface under ambient illumination. Nanotechnol 2012;23:1-12
  • Schmidt S, Volodkin D. Microparticulate biomolecules by mild caco3 templating. J Mater Chem B 2013;1:1210-18
  • Volodkin DV, Petrov AI, Prevot M, et al. Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation. Langmuir 2004;20:3398-406
  • Wang C, Zhao J, Zhao X, et al. Synthesis of nanosized calcium carbonate (aragonite) via a polyacrylamide inducing process. Powder Technol 2006;163:134-8
  • Islam KN, Bakar MZ, Noordin MM, et al. Characterisation of calcium carbonate and its polymorphs from cockle shells (anadara granosa). Powder Technol 2011;213:188-91
  • Islam KN, Zuki A, Ali M, et al. Facile synthesis of calcium carbonate nanoparticles from cockle shells. J Nanomater 2012;2012:1-5
  • Xu ZP, Zeng QH, Lu GQ, et al. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006;61:1027-40
  • Qian K, Shi T, Tang T, et al. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against rhizoctonia solani. Microchimica Acta 2011;173:51-7
  • Li M, Mann S. Emergent nanostructures: water-induced mesoscale transformation of surfactant stabilized amorphous calcium carbonate nanoparticles in reverse microemulsions. Adv Funct Mater 2002;12:773-9
  • Gupta R. Synthesis of precipitated calcium carbonate nanoparticles using modified emulsion membranes. Gorgia Inist Tech 2004
  • Hu Z, Deng Y, Sun Q. Synthesis of precipitated calcium carbonate nanoparticles using a two-membrane system. Colloid J 2004;66:745-50
  • Ueno Y, Futagawa H, Takagi Y, et al. Drug-incorporating calcium carbonate nanoparticles for a new delivery system. J Control Release 2005;103:93-8
  • Huber M, Stark WJ, Loher S, et al. Flame synthesis of calcium carbonate nanoparticles. Chem Commun 2005:648-50
  • Shafiu Kamba A, Ismail M, Tengku Ibrahim TA, et al. A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system. BioMed Res Int 2013;2013:1-10
  • Casanova H, Higuita LP. Synthesis of calcium carbonate nanoparticles by reactive precipitation using a high pressure jet homogenizer. Chem Eng J 2011;175:569-78
  • Barhoum A, Rahier H, Abou-Zaied RE, et al. Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl Mater Inter 2014;6:2734-44
  • Idrees M. Characterization of caco3 nanoparticles synthesized by reverse microemulsion technique in different concentrations of surfactants. Iran J Chem Chem Eng 2013;32:27-35
  • Hood MA, Mari M, Muñoz-Espí R. Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials 2014;7:4057-87
  • Chen S, Li F, Zhuo RX, et al. Efficient non-viral gene delivery mediated by nanostructured calcium carbonate in solution-based transfection and solid-phase transfection. Mol BioSys 2011;7:2841-7
  • Li M, Rouaud O, Poncelet D. Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int J Pharm 2008;363:26-39
  • Narayanan K, Subrahmanyam V, Venkata Rao J. A fractional factorial design to study the effect of process variables on the preparation of hyaluronidase loaded plga nanoparticles. Enzyme Res 2014;2014:1-10
  • Chen S, Li F, Zhuo RX, et al. Efficient non-viral gene delivery mediated by nanostructured calcium carbonate in solution-based transfection and solid-phase transfection. Mol Biosyst 2011;7:2841-7
  • Görner T, Gref R, Michenot D, et al. Lidocaine-loaded biodegradable nanospheres: Optimization of the drug incorporation into the polymer matrix. J Control Release 1999;57:259-68
  • Slowing II, Vivero-Escoto JL, Wu CW, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Del Rev 2008;60:1278-88
  • Moreira AF, Gaspar VM, Costa EC, et al. Preparation of end-capped ph-sensitive mesoporous silica nanocarriers for on-demand drug delivery. Eur J Pharm Biopharm 2014;88:1012-25
  • Peng H, Li K, Wang T, et al. Preparation of hierarchical mesoporous caco3 by a facile binary solvent approach as anticancer drug carrier for etoposide. Nanoscale Res Let 2013;8:1-11
  • Greish K. Enhanced permeability and retention (epr) effect for anticancer nanomedicine drug targeting. In: Cancer nanotechnology. Springer; 2010. p. 25-37
  • Kim SK, Foote MB, Huang L. Targeted delivery of ev peptide to tumor cell cytoplasm using lipid coated calcium carbonate nanoparticles. Cancer Lett 2013;334:311-18
  • Nezhadi SH, Choong PF, Lotfipour F, et al. Gelatin-based delivery systems for cancer gene therapy. J Drug Target 2009;17:731-8
  • Dass C, Hallaj-Nezhadi S, Lotfipour F. Nanoparticle-mediated interleukin-12 cancer gene therapy. J Pharm Pharm Sci 2010;13:472-85
  • Hallaj-Nezhadia S, Lotfıpour F, Dass CR. Delivery of nanoparticulate drug delivery systems via the intravenous route for cancer gene therapy. Die Pharmazie-An Int J Pharm Sci 2010;65:855-9
  • Chen S, Li F, Zhuo RX, et al. Efficient non-viral gene delivery mediated by nanostructured calcium carbonate in solution-based transfection and solid-phase transfection. Mol Bio Systems 2011;7:2841-7
  • Wang CQ, Gong MQ, Wu JL, et al. Dual-functionalized calcium carbonate based gene delivery system for efficient gene delivery. RSC Advances 2014;4:38623-9
  • He X, Liu T, Chen Y, et al. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-c sirna effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo. Cancer Gene Ther 2008;15:193-202
  • Kango S, Kalia S, Celli A, et al. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 2013;38:1232-61
  • Taniguchi Y, Ogawa M, Gang W, et al. Preparation of hyperfunctional carbon black by grafting of hyperbranched polyester onto the surface. Mater Chem Phys 2008;108:397-402
  • Peng Q, Lai DM, Kang E, et al. Preparation of polymer-silicon (100) hybrids via interface-initiated reversible addition-fragmentation chain-transfer (raft) polymerization. Macromolecules 2006;39:5577-82
  • Zhao D, Liu CJ, Zhuo RX, et al. Alginate/caco3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Mol Pharm 2012;9:2887-93
  • Zhao D, Zhuo RX, Cheng SX. Alginate modified nanostructured calcium carbonate with enhanced delivery efficiency for gene and drug delivery. Mol BioSys 2012;8:753-9
  • Horie M, Kato H, Fujita K, et al. In vitro evaluation of cellular response induced by manufactured nanoparticles. Chem Res Toxicol 2011;25:605-19
  • Horie M, Kato H, Iwahashi H. Cellular effects of manufactured nanoparticles: Effect of adsorption ability of nanoparticles. Arch Toxicol 2013;87:771-81
  • Horie M, Nishio K, Kato H, et al. Evaluation of cellular influences caused by calcium carbonate nanoparticles. Chem Biol Interact 2014;210:64-76
  • Cronholm P, Karlsson HL, Hedberg J, et al. Intracellular uptake and toxicity of ag and cuo nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small 2013;9:970-82
  • Goss SL, Lemons KA, Kerstetter JE, et al. Determination of calcium salt solubility with changes in ph and pco2, simulating varying gastrointestinal environments. J Pharm Pharmacol 2007;59:1485-92
  • Kamba SA, Ismail M, Hussein-Al-Ali SH, et al. In vitro delivery and controlled release of doxorubicin for targeting osteosarcoma bone cancer. Molecules 2013;18:10580-98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.