449
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension

, &

Bibliography

  • Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 2013;453:126-41
  • Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 2008;364:64-75
  • Müller RH, Gohla S, Keck CM. State of the art of nanocrystals -. Special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 2011;78:1-9
  • Shegokar R, Müller RH. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 2010;399:129-39
  • Rasenack N, Müller BW. Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol 2004;9:1-13
  • Kesisoglou F, Panmai S, Wu Y. Nanosizing--oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007;59:631-44
  • Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006;62:3-16
  • Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 2011;63:427-40
  • Van Eerdenbrugh B, Vermant J, Martens JA, et al. A Screening Study of Surface Stabilization during the Production of Drug Nanocrystals. J Pharm Sci 2009;98:2091-103
  • Yue PF, Li Y, Wan J, et al. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int J Pharm 2013;454:269-77
  • George M, Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci 2013;48:142-52
  • Zhang D, Tan T, Gao L, et al. Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev Ind Pharm 2007;33:569-75
  • Sahu BP, Das MK. Preparation and in vitro/in vivo evaluation of felodipine nanosuspension. Eur J Drug Metab Pharmacokinet 2014;39:183-93
  • Kayaert P, Van den Mooter G. Is the amorphous fraction of a dried nanosuspension caused by milling or by drying? A case study with Naproxen and Cinnarizine. Eur J Pharm Biopharm 2012;81:650-6
  • Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003;18:113-20
  • Kwade A. Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number. Powder Technol 1999;105:382-8
  • Verma S, Kumar S, Gokhale R, et al. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm 2011;406:145-52
  • Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 2011;63:456-69
  • Müller RH, Becker R, Kruss B, et al. inventors. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. US5858410; 1994
  • Junghanns JU, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 2008;3:295-309
  • Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001;47:3-19
  • Kipp JE, Wong JCT, Doty MJ, et al. inventors. Microprecipitation method for preparing submicron suspensions. US7037528;2001
  • Müller RH, Möschwitzer JP. inventors. Method and device for producing very fine particles and coating such particles. US20090297565;2009
  • Möschwitzer JP. inventor. Method for producing ultrafine submicronic suspensions. US8034381;2011
  • Salazar J, Müller RH, Möschwitzer JP. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci 2013;49:565-77
  • Möschwitzer J, Lemke A. inventors. Method for carefully producing ultrafine particle suspensions and ultrafine particles and use thereof. WO2006108637A2;2005
  • Salazar J, Heinzerling O, Müller RH, et al. Process optimization of a novel production method for nanosuspensions using design of experiments (DoE). Int J Pharm 2011;420:395-403
  • Al Shaal L, Shegokar R, Müller RH. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm 2011;420:133-40
  • Hilden LR, Morris KR. Physics of amorphous solids. J Pharm Sci 2004;93:3-12
  • Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 1997;86:1-12
  • Teagarden DL, Baker DS. Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur J Pharm Sci 2002;15:115-33
  • Salazar J, Ghanem A, Müller RH, et al. Nanocrystals: Comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm 2012;81:82-90
  • Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 2001;48:27-42
  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000;50:47-60
  • Savolainen M, Heinz A, Strachan C, et al. Screening for differences in the amorphous state of indomethacin using multivariate visualization. Eur J Pharm Sci 2007;30(2):113-23
  • Liu T, Müller RH, Möschwitzer J. Systematical investigation of the H 42 technology for the production of resveratrol nanocrystals using design of experiments. AAPS Annual Meeting; Chicago; 2012
  • Lindfors L, Skantze P, Skantze U, et al. Amorphous drug nanosuspensions. 1. Inhibition of Ostwald ripening. Langmuir 2006;22:906-10
  • Pu X, Sun J, Wang Y, et al. Development of a chemically stable 10-hydroxycamptothecin nanosuspensions. Int J Pharm 2009;379:167-73
  • Xia DN, Quan P, Piao HZ, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci 2010;40:325-34
  • Shelar DB, Pawar SK, Vavia PR. Fabrication of isradipine nanosuspension by anti-solvent microprecipitation–high-pressure homogenization method for enhancing dissolution rate and oral bioavailability. Drug Deliv Transl Res 2013;3:384-91
  • Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev 2004;56:335-47
  • Sharma P, Zujovic ZD, Bowmaker GA, et al. Evaluation of a crystalline nanosuspension: polymorphism, process induced transformation and in vivo studies. Int J Pharm 2011;408:138-51
  • Lai F, Sinico C, Ennas G, et al. Diclofenac nanosuspensions: influence of preparation procedure and crystal form on drug dissolution behaviour. Int J Pharm 2009;373:124-32
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004;3:785-96
  • Möschwitzer J, Müller RH. New method for the effective production of ultrafine drug nanocrystals. J Nanosci Nanotechnol 2006;6:3145-53
  • Deng Z, Xu S, Li S. Understanding a relaxation behavior in a nanoparticle suspension for drug delivery applications. Int J Pharm 2008;351:236-43
  • Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm 2006;62:282-7
  • Liu T, Müller RH, Möschwitzer J. The effect of API particle size on the efficiency of typical nanosizing processes. Tag der Pharmazie; Berlin: 2014
  • Knieke C, Sommer M, Peukert W. Identifying the apparent and true grinding limit. Powder Technol 2009;195:25-30
  • Torrado G, Fraile S, Torrado S, et al. Process-induced crystallite size and dissolution changes elucidated by a variety of analytical methods. Int J Pharm 1998;166:55-63
  • Stenger F, Mende S, Schwedes J, et al. Nanomilling in stirred media mills. Chem Eng Sci 2005;60:4557-65
  • Cerdeira AM, Mazzotti M, Gander B. Role of Milling Parameters and Particle Stabilization on Nanogrinding of Drug Substances of Similar Mechanical Properties. Chem Eng Technol 2011;34:1427-38
  • Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 2006;312:179-86
  • Niwa T, Nakanishi Y, Danjo K. One-step preparation of pharmaceutical nanocrystals using ultra cryo-milling technique in liquid nitrogen. Eur J Pharm Sci 2010;41:78-85
  • Sinha B, Müller RH, Möschwitzer JP. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals. Int J Pharm 2013;458:315-23
  • Jinno J, Kamada N, Miyake M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 2006;111:56-64
  • Dai WG, Dong LC, Song YQ. Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int J Pharm 2007;342:201-7
  • Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. Int J Pharm 1998;160:229-37
  • Morakul B, Suksiriworapong J, Leanpolchareanchai J, et al. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability. Int J Pharm 2013;457:187-96
  • Sinha B. Systematical ivestigation of the cavi-precipitation process to prepare drug nanocrystals. PhD Thesis, Free University of Berlin, Berlin (Germany); 2013
  • Sharma P, Denny WA, Garg S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int J Pharm 2009;380:40-8
  • Huang Y, Luo X, You X, et al. The preparation and evaluation of water-soluble SKLB610 nanosuspensions with improved bioavailability. AAPS PharmSciTech 2013;14:1236-43
  • Möschwitzer J. Drug nanocrystals prepared by high pressure homogenisation - the universal formulation approach for poorly soluble drugs. PhD Thesis FU; Berlin: 2006
  • Kumar S, Gokhale R, Burgess DJ. Quality by Design approach to spray drying processing of crystalline nanosuspensions. Int J Pharm 2014;464:234-42
  • Lindfors L, Skantze P, Skantze U, et al. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir 2007;23:9866-74
  • Yang W, Johnston KP, Williams RO3rd. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur J Pharm Biopharm 2010;75:33-41
  • Horter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 2001;46:75-87
  • Miller JM, Collman BM, Greene LR, et al. Identifying the stable polymorph early in the drug discovery-development process. Pharm Dev Technol 2005;10:291-7
  • Kumar S, Burgess DJ. Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions. Int J Pharm 2014;466:223-32
  • Pardeike J, Müller RH. Nanosuspensions: a promising formulation for the new phospholipase A2 inhibitor PX-18. Int J Pharm 2010;391:322-9
  • Nekkanti V, Pillai R, Venkateshwarlu V, et al. Development and characterization of solid oral dosage form incorporating candesartan nanoparticles. Pharm Dev Technol 2009;14:290-8
  • Zhang X, Xia Q, Gu N. Preparation of all-trans retinoic acid nanosuspensions using a modified precipitation method. Drug Dev Ind Pharm 2006;32:857-63
  • Basa S, Muniyappan T, Karatgi P, et al. Production and In Vitro Characterization of Solid Dosage form Incorporating Drug Nanoparticles. Drug Dev Ind Pharm 2008;34:1209-18
  • Talekar M, Kendall J, Denny W, et al. Development and evaluation of PIK75 nanosuspension, a phosphatidylinositol-3-kinase inhibitor. Eur J Pharm Sci 2012;47:824-33
  • Van Eerdenbrugh B, Froyen L, Van Humbeeck J, et al. Drying of crystalline drug nanosuspensions - the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur J Pharm Sci 2008;35:127-35
  • Tian XN, Li H, Zhang DR, et al. Nanosuspension for parenteral delivery of a p-terphenyl derivative: Preparation, characteristics and pharmacolcinetic studies. Colloid Surf B 2013;108:29-33
  • Figueroa CE, Bose S. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions. Eur J Pharm Biopharm 2013;85:1046-55
  • Salazar J, Muller RH, Moschwitzer JP. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci 2013;49:565-77
  • Van Eerdenbrugh B, Froyen L, Martens JA, et al. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int J Pharm 2007;338:198-206
  • Kakran M, Shegokar R, Sahoo NG, et al. Fabrication of quercetin nanocrystals: Comparison of different methods. Eur J Pharm Biopharm 2012;80:113-21
  • Zhao YX, Hua HY, Chang M, et al. Preparation and cytotoxic activity of hydroxycamptothecin nanosuspensions. Int J Pharm 2010;392:64-71
  • Niwa T, Miura S, Danjo K. Design of Dry Nanosuspension with Highly Spontaneous Dispersible Characteristics to Develop Solubilized Formulation for Poorly Water-Soluble Drugs. Pharm Res 2011;28:2339-49
  • Ali HSM, York P, Ali AMA, et al. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 2011;149:175-81
  • Mishra PR, Al Shaal L, Müller RH, et al. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm 2009;371:182-9
  • Sun W, Mao SR, Shi Y, et al. Nanonization of Itraconazole by High Pressure Homogenization: Stabilizer Optimization and Effect of Particle Size on Oral Absorption. J Pharm Sci 2011;100:3365-73
  • Antunes ABD, De Geest BG, Vervaet C, et al. Solvent-free drug crystal engineering for drug nano- and micro suspensions. Eur J Pharm Sci 2013;48:121-9
  • Li W, Quan P, Zhang YQ, et al. Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. Int J Pharm 2014;460:13-23
  • Sahoo NG, Kakran M, Shaal LA, et al. Preparation and Characterization of Quercetin Nanocrystals. J Pharm Sci 2011;100:2379-90
  • Rachmawati H, Al Shaal L, Müller RH, et al. Development of curcumin nanocrystal: Physical aspects. J Pharm Sci 2013;102:204-14
  • Jacobs C, Kayser O, Müller RH. Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone. Int J Pharm 2001;214:3-7
  • Peters K, Leitzke S, Diederichs JE, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother 2000;45:77-83
  • Li W, Yang YG, Tian YS, et al. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. Int J Pharm 2011;408:157-62
  • Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur J Pharm Sci 2009;36:502-10
  • Zhang Z, Zhang XM, Xue W, et al. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line. Int J Nanomed 2010;5:735-42
  • Kassem MA, Rahman AAA, Ghorab MM, et al. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 2007;340:126-33
  • Zhang F, Aaltonen J, Tian F, et al. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin. Eur J Pharm Biopharm 2009;71:64-70
  • Chieng N, Rades T, Saville D. Formation and physical stability of the amorphous phase of ranitidine hydrochloride polymorphs prepared by cryo-milling. Eur J Pharm Biopharm 2008;68:771-80
  • Gupta MK, Vanwert A, Bogner RH. Formation of physically stable amorphous drugs by milling with neusilin. J Pharm Sci 2003;92:536-51
  • Yonemochi E, Kitahara S, Maeda S, et al. Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying. Eur J Pharm Sci 1999;7:331-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.