1,101
Views
94
CrossRef citations to date
0
Altmetric
Reviews

Intracellular delivery of nanocarriers and targeting to subcellular organelles

& , PhD DSc (Director)

Bibliography

  • Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Ann Rev Biomed Engineering 2006;8:343-75
  • Rajendran L, Knolker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 2010;9(1):29-42
  • D’Souza GG, Weissig V. Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Exp Opin Drug Deliv 2009;6(11):1135-48
  • Hong W, Chen D, Zhang X, et al. Reversing multidrug resistance by intracellular delivery of Pluronic(R) P85 unimers. Biomaterials 2013;34(37):9602-14
  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Controlled Release 2010;145(3):182-95
  • Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev 2012;41(7):2718-39
  • Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 2012;9(9):2380-402
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422(6927):37-44
  • Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm 2012;82(1):1-18
  • Shete HK, Prabhu RH, Patravale VB. Endosomal escape: a bottleneck in intracellular delivery. J Nanosci Nanotechnol 2014;14(1):460-74
  • Varkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals. J Controlled Release 2011;151(3):220-8
  • Geng T, Lu C. Microfluidic electroporation for cellular analysis and delivery. Lab Chip 2013;13(19):3803-21
  • Zilony N, Tzur-Balter A, Segal E, et al. Bombarding cancer: biolistic delivery of therapeutics using porous Si carriers. Scientific Rep 2013;3:2499
  • Zolochevska O, Ellis J, Parelkar S, et al. Interleukin-27 gene delivery for modifying malignant interactions between prostate tumor and bone. Hum Gene Ther 2013;24(12):970-81
  • Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014;5:77
  • Torchilin VP. Multifunctional nanocarriers. Advanced Drug Deliv Rev 2006;58(14):1532-55
  • Rejman J, Oberle V, Zuhorn IS, et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004;377(Pt 1):159-69
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5(4):505-15
  • Jain RK. Barriers to drug delivery in solid tumors. Scientific Am 1994;271(1):58-65
  • Jain RK. Transport of molecules across tumor vasculature. Cancer Metastat Rev 1987;6(4):559-93
  • Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998;95(8):4607-12
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46(12 Pt 1):6387-92
  • Ishida O, Maruyama K, Sasaki K, et al. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 1999;190(1):49-56
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9(8):615-27
  • Owens DEPeppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307(1):93-102
  • Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994;263(5153):1600-3
  • Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Advanced Drug Deliv Rev 2011;63(3):152-60
  • Apte A, Koren E, Koshkaryev A, et al. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther 2014;15(1):69-80
  • Hoang B, Ekdawi SN, Reilly RM, et al. Active targeting of block copolymer micelles with trastuzumab Fab fragments and nuclear localization signal leads to increased tumor uptake and nuclear localization in HER2-overexpressing xenografts. Mol Pharm 2013;10(11):4229-41
  • Kawamura E, Yamada Y, Yasuzaki Y, et al. Intracellular observation of nanocarriers modified with a mitochondrial targeting signal peptide. J Biosci Bioengn 2013;116(5):634-7
  • Matsuo K, Yoshikawa T, Oda A, et al. Efficient generation of antigen-specific cellular immunity by vaccination with poly(γ-glutamic acid) nanoparticles entrapping endoplasmic reticulum-targeted peptides. Biochem Biophys Res Commun 2007;362(4):1069-72
  • Biswas S, Dodwadkar NS, Sawant RR, et al. Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J Drug Targeting 2011;19(7):552-61
  • Biswas S, Deshpande PP, Perche F, et al. Octa-arginine-modified pegylated liposomal doxorubicin: an effective treatment strategy for non-small cell lung cancer. Cancer Lett 2013;335(1):191-200
  • Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011;40(1):233-45
  • Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Advanced Drug Deliv Rev 2007;59(8):748-58
  • Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Ann Rev Biochem 2010;79:803-33
  • Dautry-Varsat A. Receptor-mediated endocytosis: the intracellular journey of transferrin and its receptor. Biochimie 1986;68(3):375-81
  • Torchilin VP. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 2008;90(5):604-10
  • Gupta B, Torchilin VP. Intracellular Delivery of Nanoparticles with CPPs. In: Langel Ü, editor. Handbook of Cell-Penetrating Peptides. Second Edition. CRC/Taylor&Francis, Boca Raton; 2006. p. 439-54
  • Pooga M, Hallbrink M, Zorko M, et al. Cell penetration by transportan. FASEB 1998;12(1):67-77
  • Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997;88(2):223-33
  • Oehlke J, Scheller A, Wiesner B, et al. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1998;1414(1-2):127-39
  • Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001;276(8):5836-40
  • Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 2012;18(7):385-93
  • Wang F, Wang Y, Zhang X, et al. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Controlled Release 2014;174:126-36
  • Pappalardo JS, Langellotti CA, Di Giacomo S, et al. In vitro transfection of bone marrow-derived dendritic cells with TATp-liposomes. Int J Nanomed 2014;9:963-73
  • Zhu L, Wang T, Perche F, et al. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci USA 2013;110(42):17047-
  • Koren E, Apte A, Jani A, et al. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Controlled Release 2012;160(2):264-73
  • Reynolds F, Weissleder R, Josephson L. Protamine as an efficient membrane-translocating peptide. Bioconjugate Chem 2005;16(5):1240-5
  • Witte K, Olausson BE, Walrant A, et al. Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Biochim Biophys Acta 2013;1828(2):824-33
  • Wollack JW, Zeliadt NA, Mullen DG, et al. Multifunctional prenylated peptides for live cell analysis. J Am Chem Soc 2009;131(21):7293-303
  • O’Callaghan K, Lee L, Nguyen N, et al. Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemia. Blood 2012;119(7):1717-25
  • Liu XY, Timmons S, Lin YZ, et al. Identification of a functionally important sequence in the cytoplasmic tail of integrin beta 3 by using cell-permeable peptide analogs. Proc Natl Acad Sci USA 1996;93(21):11819-24
  • Maiolo JR, Ferrer M, Ottinger EA. Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim Biophys Acta 2005;1712(2):161-72
  • Mueller J, Kretzschmar I, Volkmer R, et al. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjugate Chem 2008;19(12):2363-74
  • Herbig ME, Weller K, Krauss U, et al. Membrane surface-associated helices promote lipid interactions and cellular uptake of human calcitonin-derived cell penetrating peptides. Biophys J 2005;89(6):4056-66
  • Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Advanced Drug Deliv Rev 2008;60(4-5):548-58
  • Al Soraj M, He L, Peynshaert K, et al. siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat. J Controlled Release 2012;161(1):132-41
  • Mager I, Langel K, Lehto T, et al. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochim Biophys Acta 2012;1818(3):502-11
  • Buhl T, Braun A, Forkel S, et al. Internalization routes of cell-penetrating melanoma antigen peptides into human dendritic cells. Exp Dermatol 2014;23(1):20-6
  • Kim A, Shin TH, Shin SM, et al. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide. PLoS One 2012;7(12):e51813
  • Farkhani SM, Valizadeh A, Karami H, et al. Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 2014. [Epub ahead of print]
  • Olson ES, Jiang T, Aguilera TA, et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci USA 2010;107(9):4311-16
  • Biswas S, Dodwadkar NS, Deshpande PP, et al. Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm 2013;84(3):517-25
  • Liu BR, Winiarz JG, Moon JS, et al. Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides. Colloids and surfaces B, Biointerfaces 2013;111C:162-70
  • MacEwan SR, Chilkoti A. Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdisciplinary Rev Nanomed Nanobiotechnol 2013;5(1):31-48
  • Lee ES, Gao Z, Kim D, et al. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J Controlled Release 2008;129(3):228-36
  • Zhang W, Song J, Zhang B, et al. Design of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells. Bioconjugate Chem 2011;22(7):1410-15
  • Watkins GA, Jones EF, Scott Shell M, et al. Development of an optimized activatable MMP-14 targeted SPECT imaging probe. Bioorganic Med Chem 2009;17(2):653-9
  • Macewan SR, Chilkoti A. Digital switching of local arginine density in a genetically encoded self-assembled polypeptide nanoparticle controls cellular uptake. Nano Lett 2012;12(6):3322-8
  • Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995;92(16):7297-301
  • Behr J-P. The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int J Chem 1997;51(1-2):34-6
  • Chen J, Hessler JA, Putchakayala K, et al. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes. J Phys Chem B 2009;113(32):11179-85
  • Vasir JK, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Advanced Drug Deliv Rev 2007;59(8):718-28
  • Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 2010;123(Pt 8):1183-9
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Hafez IM, Cullis PR. Cholesteryl hemisuccinate exhibits pH sensitive polymorphic phase behavior. Biochim Biophys Acta 2000;1463(1):107-14
  • Motion JP, Nguyen J, Szoka FC. Phosphatase-triggered fusogenic liposomes for cytoplasmic delivery of cell-impermeable compounds. Angew Chem Int Ed Engl 2012;51(36):9047-51
  • Ghanbarzadeh S, Arami S, Pourmoazzen Z, et al. Plasma stable, pH-sensitive fusogenic polymer-modified liposomes: A promising carrier for mitoxantrone. J Biomaterials Applications 2013; Epub ahead of print
  • Yuba E, Harada A, Sakanishi Y, et al. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials 2013;34(12):3042-52
  • Bayles AR, Chahal HS, Chahal DS, et al. Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids. Nano Lett 2010;10(10):4086-92
  • Ding Y, Wang Y, Zhou J, et al. Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis. Biomaterials 2014;35(25):7214-27
  • Rodrigueza WV, Thuahnai ST, Temel RE, et al. Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J Biol Chem 1999;274(29):20344-50
  • Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996;271(5248):518-20
  • Lin Q, Chen J, Ng KK, et al. Imaging the Cytosolic Drug Delivery Mechanism of HDL-Like Nanoparticles. Pharm Res 2014;31(6):1438-49
  • Tanaka K, Kanazawa T, Horiuchi S, et al. Cytoplasm-responsive nanocarriers conjugated with a functional cell-penetrating peptide for systemic siRNA delivery. Int J Pharm 2013;455(1-2):40-7
  • Zhu L, Perche F, Wang T, et al. Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials 2014;35(13):4213-22
  • Peng KW, Morling FJ, Cosset FL, et al. A gene delivery system activatable by disease-associated matrix metalloproteinases. Hum Gene Ther 1997;8(6):729-38
  • Belting M, Sandgren S, Wittrup A. Nuclear delivery of macromolecules: barriers and carriers. Advanced Drug Deliv Rev 2005;57(4):505-27
  • Sui M, Liu W, Shen Y. Nuclear drug delivery for cancer chemotherapy. J Controlled Release 2011;155(2):227-36
  • Wente SR. Gatekeepers of the nucleus. Science 2000;288(5470):1374-7
  • Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Ann Rev Cell Develop Biol 1999;15:607-60
  • Gorlich D. Transport into and out of the cell nucleus. EMBO J 1998;17(10):2721-7
  • Kalderon D, Roberts BL, Richardson WD, et al. A short amino acid sequence able to specify nuclear location. Cell 1984;39(3 Pt 2):499-509
  • Hoang B, Reilly RM, Allen C. Block copolymer micelles target Auger electron radiotherapy to the nucleus of HER2-positive breast cancer cells. Biomacromolecules 2012;13(2):455-65
  • Dam DH, Lee JH, Sisco PN, et al. Direct observation of nanoparticle-cancer cell nucleus interactions. ACS Nano 2012;6(4):3318-26
  • Tsai HC, Lin JY, Maryani F, et al. Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers. Int J Nanomed 2013;8:4427-40
  • Shahin V, Albermann L, Schillers H, et al. Steroids dilate nuclear pores imaged with atomic force microscopy. J Cell Physiol 2005;202(2):591-601
  • Wang W, Zhou F, Ge L, et al. Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection. Int J Nanomed 2012;7:2513-22
  • Alberts B. Molecular biology of the cell. Garland Science; New York: 2008
  • Gutterman DD. Mitochondria and reactive oxygen species: an evolution in function. Circulation Res 2005;97(4):302-4
  • Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281(5381):1309-12
  • Vandecasteele G, Szabadkai G, Rizzuto R. Mitochondrial calcium homeostasis: mechanisms and molecules. IUBMB Life 2001;52(3-5):213-19
  • Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 2007;83(1):84-92
  • Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene 2006;25(34):4663-74
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74
  • Indran IR, Tufo G, Pervaiz S, et al. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 2011;1807(6):735-45
  • Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 2008;18(4):165-73
  • Abel F, Sjoberg RM, Nilsson S, et al. Imbalance of the mitochondrial pro- and anti-apoptotic mediators in neuroblastoma tumours with unfavourable biology. Eur J Cancer 2005;41(4):635-46
  • Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Advanced Drug Deliv Rev 2014;66:26-41
  • Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010;9(6):447-64
  • Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci USA 2012;109(40):16288-93
  • Koya K, Li Y, Wang H, et al. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 1996;56(3):538-43
  • Ito E, Yip KW, Katz D, et al. Potential use of cetrimonium bromide as an apoptosis-promoting anticancer agent for head and neck cancer. Mol Pharmacol 2009;76(5):969-83
  • Vyssokikh MY, Chernyak BV, Domnina LV, et al. SkBQ - prooxidant addressed to mitochondria. Biochem Biokhimiia 2013;78(12):1366-70
  • Lemasters JJ, Ramshesh VK. Imaging of Mitochondrial Polarization and Depolarization with Cationic Fluorophores. In: Liza AP, Eric AS, editors. Methods in cell biology. Elsevier/Academic Press, Amsterdam; Boston;2007. p. 283-95
  • Weissig V, Lasch J, Erdos G, et al. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res 1998;15(2):334-7
  • D’Souza GG, Boddapati SV, Weissig V. Mitochondrial leader sequence--plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 2005;5(5):352-8
  • D’Souza GG, Cheng SM, Boddapati SV, et al. Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J Drug Target 2008;16(7):578-85
  • D’Souza GG, Rammohan R, Cheng SM, et al. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Controlled Release 2003;92(1-2):189-97
  • Yamada Y, Akita H, Kamiya H, et al. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 2008;1778(2):423-32
  • Yamada Y, Harashima H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 2012;33(5):1589-95
  • Yamada Y, Furukawa R, Yasuzaki Y, et al. Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol Ther 2011;19(8):1449-56
  • Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 2004;279(33):34682-90
  • Szeto HH. Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 2006;8(2):E277-83
  • Horton KL, Stewart KM, Fonseca SB, et al. Mitochondria-penetrating peptides. Chem Biol 2008;15(4):375-82
  • Fonseca SB, Pereira MP, Mourtada R, et al. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem Biol 2011;18(4):445-53
  • Pfanner N, Geissler A. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Biol 2001;2(5):339-49
  • Lin R, Zhang P, Cheetham AG, et al. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjugate Chem 2015;26(1):71-7
  • Yamada Y, Harashima H. Enhancement in selective mitochondrial association by direct modification of a mitochondrial targeting signal peptide on a liposomal based nanocarrier. Mitochondrion 2013;13(5):526-32
  • Appelqvist H, Waster P, Kagedal K, et al. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 2013;5(4):214-26
  • Cesen MH, Pegan K, Spes A, et al. Lysosomal pathways to cell death and their therapeutic applications. Experimental Cell Res 2012;318(11):1245-51
  • Kirkegaard T, Jaattela M. Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 2009;1793(4):746-54
  • Ubah OC, Wallace HM. Cancer therapy: Targeting mitochondria and other sub-cellular organelles. Current Pharm Des 2014;20(2):201-22
  • Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005;5(11):886-97
  • Gao W, Cao W, Zhang H, et al. Targeting lysosomal membrane permeabilization to induce and image apoptosis in cancer cells by multifunctional Au-ZnO hybrid nanoparticles. Chem Commun (Camb) 2014;50(60):8117-20
  • Koshkaryev A, Piroyan A, Torchilin VP. Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther 2012;13(1):50-60
  • Fehrenbacher N, Jäättelä M. Lysosomes as Targets for Cancer Therapy. Cancer Res 2005 2005;65(8):2993-95
  • Maniganda S, Sankar V, Nair JB, et al. A lysosome-targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy. Organic Biomol Chem 2014;12(34):6564-9
  • Nylandsted J, Gyrd-Hansen M, Danielewicz A, et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 2004;200(4):425-35
  • Nylandsted J, Rohde M, Brand K, et al. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 2000;97(14):7871-6
  • Matokanovic M, Barisic K, Filipovic-Grcic J, et al. Hsp70 silencing with siRNA in nanocarriers enhances cancer cell death induced by the inhibitor of Hsp90. Eur J Pharm Sci 2013;50(1):149-58
  • Yang Y, Xie X, Cai X, et al. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials 2014;35(14):4368-81
  • Asai T, Tsuzuku T, Takahashi S, et al. Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 2014;444(4):599-604
  • Yang Y, Xie X, Wang Z, et al. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials 2015;48:84-96
  • Vasconcelos A, Vega E, Perez Y, et al. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int J Nanomed 2015;10:609-31
  • Imani R, Emami SH, Faghihi S. Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. Phys Chem Chem Phys 2015;17(9):6328-39
  • Liu J, Zhang B, Luo Z, et al. Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale 2015;7(8):3614-26
  • Wang HX, Yang XZ, Sun CY, et al. Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials 2014;35(26):7622-34
  • Huang S, Shao K, Kuang Y, et al. Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials 2013;34(21):5294-302
  • Shrestha R, Shen Y, Pollack KA, et al. Dual peptide nucleic acid- and peptide-functionalized shell crosslinked nanoparticles designed to target mRNA toward the diagnosis and treatment of acute lung injury. Bioconjugate Chem 2012;23(3):574-85
  • Li J, Liu F, Shao Q, et al. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells. Advanced healthcare materials 2014;3(8):1230-9
  • Koshkaryev A, Piroyan A, Torchilin VP. Bleomycin in octaarginine-modified fusogenic liposomes results in improved tumor growth inhibition. Cancer Lett 2013;334(2):293-301
  • Wu H, Zhu L, Torchilin VP. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials 2013;34(4):1213-22
  • Wang T, Yang S, Petrenko VA, et al. Cytoplasmic delivery of liposomes into MCF-7 breast cancer cells mediated by cell-specific phage fusion coat protein. Mol Pharm 2010;7(4):1149-58
  • Suma T, Miyata K, Anraku Y, et al. Smart multilayered assembly for biocompatible siRNA delivery featuring dissolvable silica, endosome-disrupting polycation, and detachable PEG. ACS Nano 2012;6(8):6693-705
  • Biswas S, Dodwadkar NS, Deshpande PP, et al. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Controlled Release 2012;159(3):393-402
  • Biswas S, Dodwadkar NS, Piroyan A, et al. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012;33(18):4773-82
  • Zhuang Q, Jia H, Du L, et al. Targeted surface-functionalized gold nanoclusters for mitochondrial imaging. Biosensors Bioelectron 2014;55:76-82
  • Santos J, Sousa F, Queiroz J, et al. Rhodamine based plasmid DNA nanoparticles for mitochondrial gene therapy. Colloids and surfaces B, Biointerfaces 2014;121:129-40
  • Lyrawati D, Trounson A, Cram D. Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharm Res 2011;28(11):2848-62
  • Koshkaryev A, Thekkedath R, Pagano C, et al. Targeting of lysosomes by liposomes modified with octadecyl-rhodamine B. Journal Drug Targeting 2011;19(8):606-14
  • Thekkedath R, Koshkaryev A, Torchilin VP. Lysosome-targeted octadecyl-rhodamine B-liposomes enhance lysosomal accumulation of glucocerebrosidase in Gaucher’s cells in vitro. Nanomedicine (Lond) 2013;8(7):1055-65
  • Hsu J, Northrup L, Bhowmick T, et al. Enhanced delivery of alpha-glucosidase for Pompe disease by ICAM-1-targeted nanocarriers: comparative performance of a strategy for three distinct lysosomal storage disorders. Nanomed 2012;8(5):731-9
  • Hsu J, Serrano D, Bhowmick T, et al. Enhanced endothelial delivery and biochemical effects of alpha-galactosidase by ICAM-1-targeted nanocarriers for Fabry disease. J Controlled Release 2011;149(3):323-31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.