1,393
Views
140
CrossRef citations to date
0
Altmetric
Review

Long-term delivery of protein therapeutics

, , &

Bibliography

  • America PRaMo3. Biologic Medicines in Development; 2013 February 7, 2013
  • Davison DB. The number of human genes and proteins. Nano Science and Technology Institute; 2002. pp 6-11
  • Valkov E, Sharpe T, Marsh M, et al. Targeting protein-protein interactions and fragment-based drug discovery. Top Curr Chem 2012;317:145-79
  • Thiel P, Kaiser M, Ottmann C. Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Angew Chem 2012;51(9):2012-18
  • Voet A, Zhang KY. Pharmacophore modelling as a virtual screening tool for the discovery of small molecule protein-protein interaction inhibitors. Curr Pharm Des 2012;18(30):4586-98
  • Su J, Mazzeo J, Subbarao N, Jin T. Pharmaceutical development of biologics: fundamentals, challenges and recent advances. Ther Deliv 2011;2(7):865-71
  • Rathore AS. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol 2009;27(9):546-53
  • Kaltashov IA, Bobst CE, Abzalimov RR, et al. Advances and challenges in analytical characterization of biotechnology products: mass spectrometry-based approaches to study properties and behavior of protein therapeutics. Biotechnol Adv 2012;30(1):210-22
  • Gilg D, Riedl B, Zier A, Zimmermann MF. Analytical methods for the characterization and quality control of pharmaceutical peptides and proteins, using erythropoietin as an example. Pharm Acta Helv 1996;71(6):383-94
  • Office CB. Research and Development in the Pharmaceutical Industry; 2006
  • Pharmaceutical Research and Manufacturers of America P. Key Industry and PhRMA Facts: Pharmaceutical Research and Manufacturers of America, PhRMA; 2013
  • Jiskoot W, Randolph TW, Volkin DB, et al. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci 2012;101(3):946-54
  • Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014;6(5):422-37
  • Aungst BJ. Intestinal permeation enhancers. J Pharm Sci 2000;89(4):429-42
  • Gupta S, Jain A, Chakraborty M, et al. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv 2013;20(6):237-46
  • Li P, Nielsen HM, Mullertz A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin Drug Deliv 2012;9(10):1289-304
  • Park K, Kwon IC, Park K. Oral protein delivery: current status and future prospect. Reactive Funct Polym 2011;71(3):280-7
  • Sakagami M. Systemic delivery of biotherapeutics through the lung: opportunities and challenges for improved lung absorption. Ther Deliv 2013;4(12):1511-25
  • Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci 2010;99(6):2557-75
  • Sabaté E. Adherence to long-term therapies - evidence for action. World Health Organization, Switzerland; 2003
  • Yandrapu S, Kompella UB. Development of sustained-release microspheres for the delivery of SAR 1118, an LFA-1 antagonist intended for the treatment of vascular complications of the eye. J Ocul Pharmacol Ther 2013;29(2):236-48
  • Koenig J. Does process excellence handcuff drug development? Drug Discov Today 2011;16(9-10):377-81
  • Agarwal P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today 2013;18(7–8):337-49
  • Kempe S, Mäder K. In situ forming implants — an attractive formulation principle for parenteral depot formulations. J Control Release 2012;161(2):668-79
  • Schoenhammer K, Boisclair J, Schuetz H, et al. Biocompatibility of an injectable in situ forming depot for peptide delivery. J Pharm Sci 2010;99(10):4390-9
  • Schoenhammer K, Petersen H, Guethlein F, Goepferich A. Poly(ethyleneglycol) 500 dimethylether as novel solvent for injectable in situ forming depots. Pharm Res 2009;26(12):2568-77
  • Schoenhammer K, Petersen H, Guethlein F, Goepferich A. Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability. Int J Pharm 2009;371(1-2):33-9
  • Eliaz RE, Kost J. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res 2000;50(3):388-96
  • Brodbeck KJ, DesNoyer JR, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer. J Control Release 1999;62(3):333-44
  • Graham PD, Brodbeck KJ, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release 1999;58(2):233-45
  • Shively ML, Coonts BA, Renner WD, et al. Physico-chemical characterization of a polymeric injectable implant delivery system. J Control Release 1995;33(2):237-43
  • DesNoyer JR, McHugh AJ. Role of crystallization in the phase inversion dynamics and protein release kinetics of injectable drug delivery systems. J Control Release 2001;70(3):285-94
  • Shah NH, Railkar AS, Chen FC, et al. A biodegradable injectable implant for delivering micro and macromolecules using poly (lactic-co-glycolic) acid (PLGA) copolymers. J Control Release 1993;27(2):139-47
  • Brodbeck KJ, Pushpala S, McHugh AJ. Sustained release of human growth hormone from PLGA solution depots. Pharm Res 1999;16(12):1825-9
  • Ravivarapu HB, Moyer KL, Dunn RL. Parameters affecting the efficacy of a sustained release polymeric implant of leuprolide. Int J Pharm 2000;194(2):181-91
  • Bouissou C, Rouse JJ, Price R, van der Walle CF. The influence of surfactant on PLGA microsphere glass transition and water sorption: remodeling the surface morphology to attenuate the burst release. Pharm Res 2006;23(6):1295-305
  • Okumu FW, Dao le N, Fielder PJ, et al. Sustained delivery of human growth hormone from a novel gel system: SABER. Biomaterials 2002;23(22):4353-8
  • Pechenov S, Shenoy B, Yang MX, et al. Injectable controlled release formulations incorporating protein crystals. J Control Release 2004;96(1):149-58
  • Luan X, Bodmeier R. Influence of the poly(lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems. J Control Release 2006;110(2):266-72
  • Luan X, Bodmeier R. In situ forming microparticle system for controlled delivery of leuprolide acetate: influence of the formulation and processing parameters. Eur J Pharm Sci 2006;27(2-3):143-9
  • Jain RA, Rhodes CT, Railkar AM, et al. Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: effect of various formulation variables. Eur J Pharm Biopharm 2000;50(2):257-62
  • Jain RA, Rhodes CT, Railkar AM, et al. Controlled delivery of drugs from a novel injectable in situ formed biodegradable PLGA microsphere system. J Microencapsul 2000;17(3):343-62
  • Ruiz-Hornillos J, Henriquez-Santana A, Moreno-Fernandez A, et al. Systemic allergic dermatitis caused by the solvent of Eligard. Contact Dermat 2009;61(6):355-6
  • Chen S, Pieper R, Webster DC, Singh J. Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int J Pharm 2005;288(2):207-18
  • Jeong B, Lee KM, Gutowska A, An YH. Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules 2002;3(4):865-8
  • Kim YJ, Choi S, Koh JJ, et al. Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm Res 2001;18(4):548-50
  • Zentner GM, Rathi R, Shih C, et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 2001;72(1-3):203-15
  • Chen S, Singh J. Controlled release of growth hormone from thermosensitive triblock copolymer systems: in vitro and in vivo evaluation. Int J Pharm 2008;352(1-2):58-65
  • Simpson RJ. Stabilization of proteins for storage. Cold Spring Harb protoc 2010;2010(5):pdb top79
  • Szenczi A, Kardos J, Medgyesi GA, Zavodszky P. The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals 2006;34(1):5-14
  • Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 2003;20(9):1325-36
  • Rajagopal K, Wood J, Tran B, et al. Trehalose limits BSA aggregation in spray-dried formulations at high temperatures: implications in preparing polymer implants for long-term protein delivery. J Pharm Sci 2013;102(8):2655-66
  • van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res 2000;17(10):1159-67
  • Schwendeman SP. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit Rev Ther Drug Carrier Syst 2002;19(1):73-98
  • Stankovic M, Tomar J, Hiemstra C, et al. Tailored protein release from biodegradable poly(epsilon-caprolactone-PEG)-b-poly(epsilon-caprolactone) multiblock-copolymer implants. Eur J Pharm Biopharm 2014;87(2):329-37
  • Stankovic M, de Waard H, Steendam R, et al. Low temperature extruded implants based on novel hydrophilic multiblock copolymer for long-term protein delivery. Eur J Pharm Sci 2013;49(4):578-87
  • Ma G, Miao B, Song C. Thermosensitive PCL-PEG-PCL hydrogels: synthesis, characterization, and delivery of proteins. J Appl Polym Sci 2010;116(4):1985-93
  • Gong CY, Dong PW, Shi S, et al. Thermosensitive PEG–PCL–PEG hydrogel controlled drug delivery system: sol–gel–sol transition and in vitro drug release study. J Pharm Sci 2009;98(10):3707-17
  • Jiang Z, Hao J, You Y, et al. Biodegradable thermogelling hydrogel of P(CL-GL)-PEG-P(CL-GL) triblock copolymer: degradation and drug release behavior. J Pharm Sci 2009;98(8):2603-10
  • Joshi R, Robinson DH, Himmelstein KJ. In vitro properties of an in situ forming gel for the parenteral delivery of macromolecular drugs. Pharm Dev Technol 1999;4(4):515-22
  • Macdonald ML, Samuel RE, Shah NJ, et al. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 2011;32(5):1446-53
  • La WG, Park S, Yoon HH, et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 2013;9(23):4051-60
  • Crouzier T, Sailhan F, Becquart P, et al. The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials 2011;32(30):7543-54
  • Peterson AM, Mohwald H, Shchukin DG. pH-controlled release of proteins from polyelectrolyte-modified anodized titanium surfaces for implant applications. Biomacromolecules 2012;13(10):3120-6
  • Peterson AM, Pilz-Allen C, Kolesnikova T, et al. Growth factor release from polyelectrolyte-coated titanium for implant applications. ACS Appl Mater Interfaces 2014;6(3):1866-71
  • Kumar MN, Muzzarelli RA, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004;104(12):6017-84
  • Vaghani SS, Patel MM. Hydrogels based on interpenetrating network of chitosan and polyvinyl pyrrolidone for pH-sensitive delivery of repaglinide. Curr Drug Discov Technol 2011;8(2):126-35
  • Chan AW, Neufeld RJ. Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics. Biomaterials 2010;31(34):9040-7
  • Koetting MC, Peppas NA. pH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting therapeutic proteins. Int J Pharm 2014;471(1–2):83-91
  • Mi F-L, Sung H-W, Shyu S-S. Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J Polym Sci A 2000;38(15):2804-14
  • Dergunov SA, Mun GA. Gamma-irradiated chitosan-polyvinyl pyrrolidone hydrogels as pH-sensitive protein delivery system. Radiat Phys Chem 2009;78(1):65-8
  • Yue-hong Z, Qing S, Ting Z, et al. Preparation of pH-sensitive hydrogels for oral delivery of protein. Biomedical Engineering and Biotechnology (iCBEB), 2012 International Conference on; 28 – 30 May 2012; p. 437-40
  • Shim WS, Kim J-H, Park H, et al. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)–poly(ethylene glycol)–poly(epsilon-caprolactone-co-lactide) block copolymer. Biomaterials 2006;27(30):5178-85
  • Kim HK, Shim WS, Kim SE, et al. Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering. Tissue Eng Part A 2009;15(4):923-33
  • Determan MD, Cox JP, Mallapragada SK. Drug release from pH-responsive thermogelling pentablock copolymers. J Biomed Mater Res A 2007;81(2):326-33
  • Milašinović N, Kalagasidis Krušić M, Knežević-Jugović Z, Filipović J. Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. Int J Pharm 2010;383(1–2):53-61
  • Milašinović N, Knežević-Jugović Z, Milosavljević N, et al. Controlled release of lipase from Candida rugosa loaded into hydrogels of N-isopropylacrylamide and itaconic acid. Int J Pharm 2012;436(1–2):332-40
  • Manokruang K, Lee DS. Albumin-conjugated pH/thermo responsive poly(amino urethane) multiblock copolymer as an injectable hydrogel for protein delivery. Macromol Biosci 2013;13(9):1195-203
  • Zhao J, Zhao X, Guo B, Ma PX. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein. Biomacromolecules 2014. [Epub ahead of print]
  • Wang L, Liu Y, Zhang W, et al. Microspheres and microcapsules for protein delivery: strategies of drug activity retention. Curr Pharm Des 2013;19(35):6340-52
  • Degim IT, Celebi N. Controlled delivery of peptides and proteins. Curr Pharm Des 2007;13(1):99-117
  • Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J control Release 2003;90(3):261-80
  • Bittner B, Morlock M, Koll H, et al. Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur J Pharm Biopharm 1998;45(3):295-305
  • Johnson OL, Cleland JL, Lee HJ, et al. A month-long effect from a single injection of microencapsulated human growth hormone. Nat Med 1996;2(7):795-9
  • Genta I, Perugini P, Pavanetto F, et al. Enzyme loaded biodegradable microspheres in vitro ex vivo evaluation. J Control Release 2001;77(3):287-95
  • Fattal E, Couvreur P, Pecquet S. [Oral tolerance induced by poly (lactide-co-glycolide) containing B lactoglobulin]. Ann Pharm Fr 2002;60(1):44-9
  • Zhou S, Deng X, He S, et al. Study on biodegradable microspheres containing recombinant interferon-alpha-2a. J Pharm Pharmacol 2002;54(9):1287-92
  • Yeh MK. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. J Microencapsul 2000;17(6):743-56
  • Takenaga M, Yamaguchi Y, Kitagawa A, et al. A novel sustained-release formulation of insulin with dramatic reduction in initial rapid release. J Control Release 2002;79(1-3):81-91
  • Lamprecht A, Ubrich N, Yamamoto H, et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 2001;299(2):775-81
  • Watnasirichaikul S, Rades T, Tucker IG, Davies NM. Effects of formulation variables on characteristics of poly (ethylcyanoacrylate) nanocapsules prepared from w/o microemulsions. Int J Pharm 2002;235(1-2):237-46
  • Uchida T, Yagi A, Oda Y, et al. Instability of bovine insulin in poly(lactide-co-glycolide) (PLGA) microspheres. Chem Pharm Bull(Tokyo) 1996;44(1):235-6
  • Wang N, Wu XS, Li JK. A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery. Pharm Res 1999;16(9):1430-5
  • Li JK, Wang N, Wu XS. A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery. J Pharm Sci 1997;86(8):891-5
  • Gasper MM, Blanco D, Cruz ME, Alonso MJ. Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J Control Release 1998;52(1-2):53-62
  • Fishbein I, Chorny M, Rabinovich L, et al. Nanoparticulate delivery system of a tyrphostin for the treatment of restenosis. J Control Release 2000;65(1-2):221-9
  • Kawashima Y, Yamamoto H, Takeuchi H, et al. Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J Control Release 1999;62(1-2):279-87
  • Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release 2000;65(1-2):261-9
  • Ghalanbor Z, Korber M, Bodmeier R. Protein release from poly(lactide-co-glycolide) implants prepared by hot-melt extrusion: thioester formation as a reason for incomplete release. Int J Pharm 2012;438(1-2):302-6
  • Gaudana R, Gokulgandhi M, Khurana V, et al. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme. Pharm Dev Technol 2013;18(3):752-9
  • Gaudana R, Khurana V, Parenky A, Mitra AK. Encapsulation of protein-polysaccharide HIP complex in polymeric nanoparticles. J Drug Deliv 2011;2011:458128
  • Gaudana R, Parenky A, Vaishya R, et al. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation. J Microencapsul 2011;28(1):10-20
  • Kang CE, Baumann MD, Tator CH, Shoichet MS. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury. Cells Tissues Organs 2013;197(1):55-63
  • Patel SP, Vaishya R, Mishra GP, et al. Tailor-made pentablock copolymer based formulation for sustained ocular delivery of protein therapeutics. J Drug Deliv 2014; In press
  • Mitra AK, Mishra GP. Pentablock polymers. Google Patents 2011; US 20110250283 A1
  • Patel SP, Pal D, Mitra AK. Novel pentablock copolymer-based nanoparticulate systems for sustained protein delivery. AAPS PharmSciTech 2014, 10.1208/s12249-014-0196-6
  • Lee RJ, Springer ML, Blanco-Bose WE, et al. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000;102(8):898-901
  • Geng H, Song H, Qi J, Cui D. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix. Nanoscale Res Lett 2011;6(1):312
  • Hsieh DS, Rhine WD, Langer R. Zero-order controlled-release polymer matrices for micro- and macromolecules. J Pharm Sci 1983;72(1):17-22
  • Kajihara M, Sugie T, Mizuno M, et al. Development of new drug delivery system for protein drugs using silicone (I). J Control Release 2000;66(1):49-61
  • Kajihara M, Sugie T, Hojo T, et al. Development of a new drug delivery system for protein drugs using silicone (II). J Control Release 2001;73(2-3):279-91
  • Maeda H, Ohashi E, Sano A, et al. Investigation of the release behavior of a covered-rod-type formulation using silicone. J Control Release 2003;90(1):59-70
  • Lofthouse SA, Kajihara M, Nagahara S, et al. Injectable silicone implants as vaccine delivery vehicles. Vaccine 2002;20(13-14):1725-32
  • Rohloff CM, Alessi TR, Yang B, et al. DUROS technology delivers peptides and proteins at consistent rate continuously for 3 to 12 months. J Diabetes Sci Tech 2008;2(3):461-7
  • Cukierski MJ, Johnson PA, Beck JC. Chronic (60-week) toxicity study of DUROS leuprolide implants in dogs. Int J Toxicol 2001;20(6):369-81
  • Wright JC, Tao Leonard S, Stevenson CL, et al. An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J Control Release 2001;75(1-2):1-10
  • Fowler JEJr, Gottesman JE, Reid CF, et al. Safety and efficacy of an implantable leuprolide delivery system in patients with advanced prostate cancer. J Urol 2000;164(3 Pt 1):730-4
  • Fowler JE, Flanagan M, Gleason DM, et al. Evaluation of an implant that delivers leuprolide for 1 year for the palliative treatment of prostate cancer. Urology 2000;55(5):639-42
  • Wright JC. Critical variables associated with nonbiodegradable osmotically controlled implants. AAPS J 2010;12(3):437-42
  • Fisher DM, Kellett N, Lenhardt R. Pharmacokinetics of an implanted osmotic pump delivering sufentanil for the treatment of chronic pain. Anesthesiology 2003;99(4):929-37
  • Jain PK, Karunakaran D, Friedman SH. Construction of a Photoactivated Insulin Depot. Angew Chem Int Ed 2013;52(5):1404-9
  • England JL, Haran G. Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. Annu Rev Phys Chem 2011;62:257-77
  • Canchi DR, Garcia AE. Cosolvent effects on protein stability. Annu Rev Phys Chem 2013;64:273-93
  • Yandrapu SK, Upadhyay AK, Petrash JM, Kompella UB. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol Pharm 2013;10(12):4676-86
  • Howdle SM, Watson MS, Whitaker MJ, et al. Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials. Chem Commun 2001;1:109-10
  • Joshi RV, Nelson CE, Poole KM, et al. Dual pH- and temperature-responsive microparticles for protein delivery to ischemic tissues. Acta Biomater 2013;9(5):6526-34
  • Desai TA, West T, Cohen M, et al. Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 2004;56(11):1661-73
  • Desai TA. Microfabrication technology for pancreatic cell encapsulation. Expert Opin Biol Ther 2002;2(6):633-46
  • Tyagi P, Barros M, Stansbury JW, Kompella UB. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm 2013;10(8):2858-67
  • Illum L, Fisher AN, Jabbal-Gill I, Davis SS. Bioadhesive starch microspheres and absorption enhancing agents act synergistically to enhance the nasal absorption of polypeptides. Int J Pharm 2001;222(1):109-19
  • Wheatley MA, Chang M, Park E, Langer R. Coated alginate microspheres: factors influencing the controlled delivery of macromolecules. J Appl Polym Sci 1991;43(11):2123-35
  • Mi FL, Shyu SS, Lin YM, et al. Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials 2003;24(27):5023-36
  • Sinha VR, Singla AK, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm 2004;274(1-2):1-33
  • Wu TJ, Huang HH, Lan CW, et al. Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials 2004;25(4):651-8
  • Liu X, Sun Q, Wang H, et al. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 2005;26(1):109-15
  • Santiago N, Milstein S, Rivera T, et al. Oral immunization of rats with proteinoid microspheres encapsulating influenza virus antigens. Pharm Res 1993;10(8):1243-7
  • Leach JB, Schmidt CE. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 2005;26(2):125-35
  • Herr G, Wahl D, Kusswetter W. Osteogenic activity of bone morphogenetic protein and hydroxyapatite composite implants. Ann Chir Gynaecol Suppl 1993;207:99-107
  • Ribeiro CC, Barrias CC, Barbosa MA. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 2004;25(18):4363-73
  • Kompella UB, Lee VH. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev 2001;46(1-3):211-45
  • Zhang X, Wu D, Chu CC. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials 2004;25(19):4719-30
  • Berkland C, Kipper MJ, Narasimhan B, et al. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release 2004;94(1):129-41
  • Blanco-Prieto MJ, Campanero MA, Besseghir K, et al. Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres. J Control Release 2004;96(3):437-48
  • Chia HH, Yang YY, Chung TS, et al. Auto-catalyzed poly(ortho ester) microspheres: a study of their erosion and drug release mechanism. J Control Release 2001;75(1-2):11-25
  • Schachter DM, Kohn J. A synthetic polymer matrix for the delayed or pulsatile release of water-soluble peptides. J Control Release 2002;78(1-3):143-53
  • Sinha VR, Bansal K, Kaushik R, et al. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 2004;278(1):1-23
  • Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002;54(2):169-90
  • Lakshmi S, Katti DS, Laurencin CT. Biodegradable polyphosphazenes for drug delivery applications. Adv Drug Deliv Rev 2003;55(4):467-82
  • Veronese FM, Marsilio F, Caliceti P, et al. Polyorganophosphazene microspheres for drug release: polymer synthesis, microsphere preparation, in vitro and in vivo naproxen release. J Control Release 1998;52(3):227-37
  • He JT, Su HB, Li GP, et al. Stabilization and encapsulation of a staphylokinase variant (K35R) into poly(lactic-co-glycolic acid) microspheres. Int J Pharm 2006;309(1-2):101-8
  • Lee J, Tan CY, Lee SK, et al. Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Control Release 2009;137(3):196-202
  • Lee J, Lee KY. Injectable microsphere/hydrogel combination systems for localized protein delivery. Macromol Biosci 2009;9(7):671-6
  • Blanco D, Alonso MJ. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eur J Pharm Biopharm 1998;45(3):285-94
  • Chen JL, Chiang CH, Yeh MK. The mechanism of PLA microparticle formation by water-in-oil-in-water solvent evaporation method. J Microencapsul 2002;19(3):333-46
  • Katare YK, Panda AK. Influences of excipients on in vitro release and in vivo performance of tetanus toxoid loaded polymer particles. Eur J Pharm Sci 2006;28(3):179-88
  • Liu R, Huang SS, Wan YH, et al. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf B Biointerfaces 2006;51(1):30-8
  • Zhu KJ, Jiang HL, Du XY, et al. Preparation and characterization of hCG-loaded polylactide or poly(lactide-co-glycolide) microspheres using a modified water-in-oil-in-water (w/o/w) emulsion solvent evaporation technique. J Microencapsul 2001;18(2):247-60
  • Jiang G, Thanoo BC, DeLuca PP. Effect of osmotic pressure in the solvent extraction phase on BSA release profile from PLGA microspheres. Pharm Dev Technol 2002;7(4):391-9
  • Park W, Na K. Dermatan sulfate as a stabilizer for protein stability in poly(lactide-co-glycolide) depot. Biotechnol Bioproc Eng 2009;14(5):668-74
  • Park W, Na K. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release. Colloids Surf B Biointerfaces 2009;72(2):193-200
  • Han K, Lee KD, Gao ZG, Park JS. Preparation and evaluation of poly(L-lactic acid) microspheres containing rhEGF for chronic gastric ulcer healing. J Control Release 2001;75(3):259-69
  • Zhang YM, Yang F, Yang YQ, et al. Recombinant interferon-alpha2b poly(lactic-co-glycolic acid) microspheres: pharmacokinetics-pharmacodynamics study in rhesus monkeys following intramuscular administration. Acta Pharmacol Sin 2008;29(11):1370-5
  • Igartua M, Hernandez RM, Rosas JE, et al. Gamma-irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur J Pharm Biopharm 2008;69(2):519-26
  • Wang M, Feng Q, Niu X, et al. A spheres-in-sphere structure for improving protein-loading poly (lactide-co-glycolide) microspheres. Polym Degradation Stability 2010;95(1):6-13
  • Yang HJ, Park IS, Na K. Biocompatible microspheres based on acetylated polysaccharide prepared from water-in-oil-in-water (W1/O/W2) double-emulsion method for delivery of type II diabetic drug (exenatide). Colloids Surf A Physicochem Eng Asp 2009;340(1–3):115-20
  • Lee ES, Kwon MJ, Lee H, et al. In vitro study of lysozyme in poly(lactide-co-glycolide) microspheres with sucrose acetate isobutyrate. Eur J Pharm Sci 2006;29(5):435-41
  • Turturro S, Sunoqrot S, Ying H, et al. Sustained release of matrix metalloproteinase-3 to trabecular meshwork cells using biodegradable PLGA microparticles. Mol Pharm 2013;10(8):3023-32
  • Rong X, Yang S, Miao H, et al. Effects of erythropoietin-dextran microparticle-based PLGA/PLA microspheres on RGCs. Invest Ophthalmol Vis Sci 2012;53(10):6025-34
  • Jiang HL, Jin JF, Hu YQ, Zhu KJ. Improvement of protein loading and modulation of protein release from poly(lactide-co-glycolide) microspheres by complexation of proteins with polyanions. J Microencapsul 2004;21(6):615-24
  • Castellanos IJ, Flores G, Griebenow K. Effect of cyclodextrins on alpha-chymotrypsin stability and loading in PLGA microspheres upon S/O/W encapsulation. J Pharm Sci 2006;95(4):849-58
  • Takada S, Yamagata Y, Misaki M, et al. Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique. J control Release 2003;88(2):229-42
  • Yuan W, Wu F, Guo M, Jin T. Development of protein delivery microsphere system by a novel S/O/O/W multi-emulsion. Eur J Pharm Sci 2009;36(2-3):212-18
  • Castellanos IJ, Crespo R, Griebenow K. Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J Control Release 2003;88(1):135-45
  • Yamaguchi Y, Takenaga M, Kitagawa A, et al. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives. J Control Release 2002;81(3):235-49
  • Kostanski JW, Thanoo BC, DeLuca PP. Preparation, characterization, and in vitro evaluation of 1- and 4-month controlled release orntide PLA and PLGA microspheres. Pharm Dev Technol 2000;5(4):585-96
  • Morita T, Sakamura Y, Horikiri Y, et al. Protein encapsulation into biodegradable microspheres by a novel S/O/W emulsion method using poly(ethylene glycol) as a protein micronization adjuvant. J Control Release 2000;69(3):435-44
  • Woo BH, Kostanski JW, Gebrekidan S, et al. Preparation, characterization and in vivo evaluation of 120-day poly(D,L-lactide) leuprolide microspheres. J Control Release 2001;75(3):307-15
  • Schoubben A, Blasi P, Giovagnoli S, et al. Novel composite microparticles for protein stabilization and delivery. Eur J Pharm Sci 2009;36(2-3):226-34
  • Tobio M, Nolley J, Guo Y, et al. A novel system based on a poloxamer/PLGA blend as a tetanus toxoid delivery vehicle. Pharm Res 1999;16(5):682-8
  • Emami J, Hamishehkar H, Najafabadi AR, et al. A novel approach to prepare insulin-loaded poly(lactic-co-glycolic acid) microcapsules and the protein stability study. J Pharm Sci 2009;98(5):1712-31
  • Jain RA, Rhodes CT, Railkar AM, et al. Comparison of various injectable protein-loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices: in-situ-formed implant versus in-situ-formed microspheres versus isolated microspheres. Pharm Dev Technol 2000;5(2):201-7
  • Leach WT, Simpson DT, Val TN, et al. Encapsulation of protein nanoparticles into uniform-sized microspheres formed in a spinning oil film. AAPS PharmSciTech 2005;6(4):E605-17
  • Wu J, Ding D, Ren G, et al. Sustained delivery of endostatin improves the efficacy of therapy in Lewis lung cancer model. J Control Release 2009;134(2):91-7
  • Wu J, Wu L, Xu X, et al. Microspheres made by w/o/o emulsion method with reduced initial burst for long-term delivery of endostar, a novel recombinant human endostatin. J Pharm Sci 2009;98(6):2051-8
  • Ciombor DM, Jaklenec A, Liu AZ, et al. Encapsulation of BSA using a modified W/O/O emulsion solvent removal method. J Microencapsul 2006;23(2):183-94
  • Giunchedi P, Conti B, Genta I, et al. Emulsion spray-drying for the preparation of albumin-loaded PLGA microspheres. Drug Dev Ind Pharm 2001;27(7):745-50
  • De Rosa G, Larobina D, Immacolata La Rotonda M, et al. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-beta-cyclodextrin system. J Control Release 2005;102(1):71-83
  • Lam XM, Duenas ET, Daugherty AL, et al. Sustained release of recombinant human insulin-like growth factor-I for treatment of diabetes. J Control Release 2000;67(2-3):281-92
  • Cleland JL, Duenas ET, Park A, et al. Development of poly-(D,L-lactide--coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 2001;72(1-3):13-24
  • Lam XM, Duenas ET, Cleland JL. Encapsulation and stabilization of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. J Pharm Sci 2001;90(9):1356-65
  • Quaglia F, De Rosa G, Granata E, et al. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared by spray-drying. J Control Release 2003;86(2-3):267-78
  • Park JH, Ye M, Yeo Y, et al. Reservoir-type microcapsules prepared by the solvent exchange method: effect of formulation parameters on microencapsulation of lysozyme. Mol Pharm 2006;3(2):135-43
  • Felder Ch B, Blanco-Prieto MJ, Heizmann J, et al. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters. J Microencapsul 2003;20(5):553-67
  • Freitas S, Rudolf B, Merkle HP, Gander B. Flow-through ultrasonic emulsification combined with static micromixing for aseptic production of microspheres by solvent extraction. Eur J Pharm Biopharm 2005;61(3):181-7
  • Jordan F, Naylor A, Kelly CA, et al. Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies. J Control Release 2010;141(2):153-60
  • Xu Y, Hanna MA. Electrospray encapsulation of water-soluble protein with polylactide. Effects of formulations on morphology, encapsulation efficiency and release profile of particles. Int J Pharm 2006;320(1-2):30-6
  • Xie J, Wang CH. Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnol Bioeng 2007;97(5):1278-90
  • Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with open/closed pores for sustained release of human growth hormone. J Control Release 2006;112(2):167-74
  • Perez C, De Jesus P, Griebenow K. Preservation of lysozyme structure and function upon encapsulation and release from poly(lactic-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method. Int J Pharm 2002;248(1-2):193-206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.