660
Views
55
CrossRef citations to date
0
Altmetric
Review

Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications

, (Professor, Pharmacist, Chair of Pharmaceutical Technology and Biopharmaceutics) , (Pharmacist, Senior Researcher) & (Pharmacist, Senior Researcher)

Bibliography

  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60
  • Dave N, Liu J. Liposomes for DNA nanotechnology: preparation, properties, and applications. In: Fan C, editor. DNA nanotechnology. Springer; Berlin, Heidelberg: 2013. p. 57-76
  • Kirtane AR, Panyam J. Polymer nanoparticles: weighing up gene delivery. Nat Nanotechnol 2013;8:805-6
  • Getts DR, Martin AJ, McCarthy DP, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 2012;30:1217-24
  • Koyamatsu Y, Hirano T, Kakizawa Y, et al. pH-responsive release of proteins from biocompatible and biodegradable reverse polymer micelles. J Control Release 2014;173:89-95
  • Kato Y, Inoue A, Niidome Y, Nakashima N. Thermodynamics on soluble carbon nanotubes: how do DNA molecules replace surfactants on carbon nanotubes? Sci Rep 2012;2:733
  • Noble ML, Kuhr CS, Graves SS, et al. Ultrasound-targeted microbubble destruction-mediated gene delivery into canine livers. Mol Ther 2013;21:1687-94
  • Smith DM, Simon JK, Baker JRJr. Applications of nanotechnology for immunology. Nat Rev Immunol 2013;13:592-605
  • Arima H, Arizono M, Higashi T, et al. Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with [alpha]-cyclodextrin as DNA carriers to tumor cells. Cancer Gene Ther 2012;19:358-66
  • Zagorovsky K, Chan WC. Bioimaging: illuminating the deep. Nat Mater 2013;12:285-7
  • Cassidy MC, Chan HR, Ross BD, et al. In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat Nanotechnol 2013;8:363-8
  • Wang J, Zhang G, Li Q, et al. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci Rep 2013;3:1157
  • Clyne M. Prostate cancer: magnetic particle thermotherapy for treating bone metastases. Nat Rev Urol 2013;10:125-5
  • Irvine DJ, Swartz MA, Szeto GL. Engineering synthetic vaccines using cues from natural immunity. Nat Mater 2013;12:978-90
  • Willyard C. First vaccines targeting ’cruise ship virus’ sail into clinical trials. Nat Med 2013;19:1076-7
  • Nijhara R, Balakrishnan K. Bringing nanomedicines to market: regulatory challenges, opportunities, and uncertainties. Nanomedicine 2006;2:127-36
  • Barenholz Y. Doxil® – The first FDA-approved nano-drug: lessons learned. J Control Release 2012;160:117-34
  • Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006;24:1211-18
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771-82
  • Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 2012;4:128ra39
  • Sahay G, Querbes W, Alabi C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 2013;31:653-8
  • Tsurkan MV, Hauser PV, Zieris A, et al. Growth factor delivery from hydrogel particle aggregates to promote tubular regeneration after acute kidney injury. J Control Release 2013;167:248-55
  • Tenzer S, Docter D, Kuharev J, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013;8:772-81
  • Sakurai Y, Hatakeyama H, Sato Y, et al. Gene silencing via RNAi and siRNA quantification in tumor tissue using MEND, a liposomal siRNA delivery system. Mol Ther 2013;21:1195-203
  • Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007;2:469-78
  • Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother 2004;58:168-72
  • Chauhan VP, Stylianopoulos T, Martin JD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 2012;7:383-8
  • Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 2010;39:1909-24
  • Lesniak A, Campbell A, Monopoli MP, et al. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 2010;31:9511-18
  • Walkey CD, Olsen JB, Guo H, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 2011;134:2139-47
  • Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013;8:137-43
  • Ernsting MJ, Murakami M, Roy A, Li S-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 2013;172:782-94
  • Kutscher HL, Chao P, Deshmukh M, et al. Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J Control Release 2010;143:31-7
  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003;55:403-19
  • Noga M, Edinger D, Kläger R, et al. The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials 2013;34:2530-8
  • Bader RA, Silvers AL, Zhang N. Polysialic acid-based micelles for encapsulation of hydrophobic drugs. Biomacromolecules 2011;12:314-20
  • Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007;121:3-9
  • Daum N, Tscheka C, Neumeyer A, Schneider M. Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012;4:52-65
  • Mathaes R, Winter G, Engert J, Besheer A. Application of different analytical methods for the characterization of non-spherical micro-and nanoparticles. Int J Pharm 2013;453:620-9
  • Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 2007;104:11901-4
  • Kersey FR, Merkel TJ, Perry JL, et al. Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores. Langmuir 2012;28:8773-81
  • Morton SW, Herlihy KP, Shopsowitz KE, et al. Scalable manufacture of built-to-order nanomedicine: spray-assisted layer-by-layer functionalization of PRINT nanoparticles. Adv Mater 2013;25:4707-13
  • Gratton SE, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 2008;105:11613-18
  • Xu J, Luft JC, Yi X, et al. RNA replicon delivery via lipid-complexed PRINT protein particles. Mol Pharm 2013;10:3366-74
  • Rolland JP, Maynor BW, Euliss LE, et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 2005;127:10096-100
  • Zhang H, Nunes J, Gratton S, et al. Fabrication of multiphasic and regio-specifically functionalized PRINT® particles of controlled size and shape. New J Phys 2009;11:075018
  • Galloway AL, Murphy A, DeSimone JM, et al. Development of a nanoparticle-based influenza vaccine using the PRINT® technology. Nanomedicine 2013;9:523-31
  • Enlow EM, Luft JC, Napier ME, DeSimone JM. Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings. Nano Lett 2011;11:808-13
  • Petros RA, Ropp PA, DeSimone JM. Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. J Am Chem Soc 2008;130:5008-9
  • Chu KS, Schorzman AN, Finniss MC, et al. Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials 2013;34:8424-9
  • Xu S, Nie Z, Seo M, et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 2005;117:734-8
  • Shang L, Shangguan F, Cheng Y, et al. Microfluidic generation of magnetoresponsive Janus photonic crystal particles. Nanoscale 2013;5:9553-7
  • Hakimi N, Tsai SSH, Cheng C-H, Hwang DK. One-step two-dimensional microfluidics-based synthesis of three-dimensional particles. Adv Mater 2014;26:1393-8
  • Dendukuri D, Pregibon DC, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 2006;5:365-9
  • Love JC, Wolfe DB, Jacobs HO, Whitesides GM. Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography. Langmuir 2001;17:6005-12
  • Yin Y, Lu Y, Gates B, Xia Y. Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 2001;123:8718-29
  • Lee SA, Chung SE, Park W, et al. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip 2009;9:1670-5
  • Chung SE, Park W, Shin S, et al. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 2008;7:581-7
  • Kim H, Ge J, Kim J, et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 2009;3:534-40
  • Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 2008;8:287-93
  • Ho CC, Keller A, Odell JA, Ottewill RH. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym Sci 1993;271:469-79
  • Doshi N, Prabhakarpandian B, Rea-Ramsey A, et al. Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release 2010;146:196-200
  • Doshi N, Zahr AS, Bhaskar S, et al. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci USA 2009;106:21495-9
  • Yoo J-W, Doshi N, Mitragotri S. Endocytosis and intracellular distribution of PLGA particles in endothelial cells: effect of particle geometry. Macromol Rapid Commun 2010;31:142-8
  • Yin Y, Xia Y. Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Adv Mater 2001;13:267-71
  • Yin Y, Xia Y. Self-assembly of spherical colloids into helical chains with well-controlled handedness. J Am Chem Soc 2003;125:2048-9
  • Vanapalli SA, Iacovella CR, Sung KE, et al. Fluidic assembly and packing of microspheres in confined channels. Langmuir 2008;24:3661-70
  • Velev OD, Lenhoff AM, Kaler EW. A class of microstructured particles through colloidal crystallization. Science 2000;287:2240-3
  • Kohler D, Schneider M, Krüger M, et al. Template-assisted polyelectrolyte encapsulation of nanoparticles into dispersible, hierarchically nanostructured microfibers. Adv Mater 2011;23:1376-9
  • Foss CAJr, Tierney MJ, Martin CR. Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory. J Phys Chem 1992;96:9001-7
  • Yu Y-Y, Chang S-S, Lee C-L, Wang CC. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 1997;101:6661-4
  • Busbee BD, Obare SO, Murphy CJ. An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 2003;15:414-16
  • Huh S, Wiench JW, Yoo J-C, et al. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mater 2003;15:4247-56
  • Björk EM, Söderlind F, Odén M. Tuning the shape of mesoporous silica particles by alterations in parameter space: from rods to platelets. Langmuir 2013;29:13551-61
  • Lee BK, Yun YH, Choi JS, et al. Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system. Int J Pharm 2012;427:305-10
  • Raphael AP, Primiero CA, Ansaldo AB, et al. Elongate microparticles for enhanced drug delivery to ex vivo and in vivo pig skin. J Control Release 2013;172:96-104
  • Ajayan PM, Zhou OZ. Applications of carbon nanotubes. In: Carbon nanotubes. Springer, Springer Berlin Heidelberg;2001. p. 391-425, Chapter 14; ISBN 978-3-540-41086-7
  • Lepeltier E, Bourgaux C, Maksimenko A, et al. Self-assembly of polyisoprenoyl gemcitabine conjugates: influence of supramolecular organization on their biological activity. Langmuir 2014;30:6348-57
  • Jores K, Mehnert W, Mäder K. Physicochemical investigations on solid lipid nanoparticles and on oil-loaded solid lipid nanoparticles: a nuclear magnetic resonance and electron spin resonance study. Pharm Res 2003;20:1274-83
  • Alemdaroglu FE, Alemdaroglu NC, Langguth P, Herrmann A. Cellular uptake of DNA block copolymer micelles with different shapes. Macromol Rapid Commun 2008;29:326-9
  • Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2:249-55
  • Martínez MJ, Simon-pujol D, Congregado F, et al. The presence of capsular polysaccharide in mesophilic Aeromonas hydrophila serotypes O:11 and O:34. FEMS Microbiol Lett 1995;128:69-73
  • Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One 2010;5:e10051
  • Champion J, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 2009;26:244-9
  • Mathaes R, Winter G, Besheer A, Engert J. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers. Int J Pharm 2014;465:159-64
  • Qiu Y, Liu Y, Wang L, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010;31:7606-19
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006;6:662-8
  • Arnida Janát-Amsbury MM, Ray A, et al. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 2011;77:417-23
  • Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010;30:212-17
  • Agarwal R, Singh V, Jurney P, et al. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA 2013;110:17247-52
  • Zhang K, Fang H, Chen Z, et al. Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem 2008;19:1880-7
  • Muro S, Garnacho C, Champion JA, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 2008;16:1450-8
  • Sharma G, Valenta DT, Altman Y, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 2010;147:408-12
  • Decuzzi P, Ferrari M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006;27:5307-14
  • Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 2009;26:235-43
  • Barua S, Yoo J-W, Kolhar P, et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci USA 2013;110:3270-5
  • Herd H, Daum N, Jones AT, et al. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 2013;7:1961-73
  • Lee S-Y, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 2009;20:495101
  • Gentile F, Chiappini C, Fine D, et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 2008;41:2312-18
  • Toy R, Hayden E, Shoup C, et al. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 2011;22:115101
  • Niidome T, Yamagata M, Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006;114:343-7
  • Akiyama Y, Mori T, Katayama Y, Niidome T. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J Control Release 2009;139:81-4
  • Perry JL, Reuter KG, Kai MP, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 2012;12:5304-10
  • Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47-52
  • Yang K, Wan J, Zhang S, et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2010;5:516-22
  • Merkel TJ, Chen K, Jones SW, et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J Control Release 2012;162:37-44
  • Merkel TJ, Jones SW, Herlihy KP, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci USA 2011;108:586-91
  • Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013;110:10753-8
  • Yu T, Hubbard D, Ray A, Ghandehari H. In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J Control Release 2012;163:46-54
  • Decuzzi P, Godin B, Tanaka T, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010;141:320-7
  • Godin B, Chiappini C, Srinivasan S, et al. Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 2012;22:4225-35
  • Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013;7:3926-38

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.