619
Views
25
CrossRef citations to date
0
Altmetric
Review

Cell-specific aptamers and their conjugation with nanomaterials for targeted drug delivery

, PhD (Physician in the Department of Geriatric Medicine, Specializing in Endocrinology) , , PhD (Resident in the Department of Geriatric Medicine, Specializing in Endocrinology) , , PhD (Resident in the Department of Geriatric Medicine, Specializing in Endocrinology) , , PhD (Physician in the Department of Geriatric Medicine, Specializing in Endocrinology) , , PhD (Candidate, Majoring in Endocrinology and Geriatrics) & , PhD

Bibliography

  • Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12(1):56-68
  • Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012;2(1):3-44
  • Cerchia L, Hamm J, Libri D, et al. Nucleic acid aptamers in cancer medicine. FEBS lett 2002;528(1-3):12-16
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990;346(6287):818-22
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249(4968):505-10
  • Stoltenburg R, Reinemann C, Strehlitz B. SELEX – a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007;24(4):381-403
  • Tesmer VM, Lennarz S, Mayer G, et al. Molecular mechanism for inhibition of g protein-coupled receptor kinase 2 by a selective RNA aptamer. Structure 2012;20(8):1300-9
  • Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006;103(16):6315-20
  • Langer R. Drug delivery and targeting. Nature 1998;392(6679 Suppl):5-10
  • Wilson C, Szostak JW. Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem Biol 1998;5(11):609-17
  • Geiger A, Burgstaller P, von der Eltz H, et al. RNA aptamers that bind l-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 1996;24(6):1029-36
  • Brockstedt U, Uzarowska A, Montpetit A, et al. In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines. Biochem Biophys Res Commun 2004;313(4):1004-8
  • Win MN, Klein JS, Smolke CD. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res 2006;34(19):5670-82
  • Tasset DM, Kubik MF, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Mol Biol 1997;272(5):688-98
  • Zhou J, Swiderski P, Li H, et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 2009;37(9):3094-109
  • Gopinath SC, Hayashi K, Kumar PK. Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J Virol 2012;86(12):6732-44
  • Feng H, Beck J, Nassal M, et al. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One 2011;6(11):e27862
  • Hamula CL, Zhang H, Guan LL, et al. Selection of aptamers against live bacterial cells. Anal Chem 2008;80(20):7812-19
  • Chang YC, Yang CY, Sun RL, et al. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep 2013;3:1863
  • Lee HS, Kim KS, Kim CJ, et al. Electrical detection of VEGFs for cancer diagnoses using anti-vascular endothelial growth factor aptamer-modified Si nanowire FETs. Biosens Bioelectron 2009;24(6):1801-5
  • Pai SS, Ellington AD. Using RNA aptamers and the proximity ligation assay for the detection of cell surface antigens. Methods Mol Biol 2009;504:385-98
  • Ogawa A, Tomita N, Kikuchi N, et al. Aptamer selection for the inhibition of cell adhesion with fibronectin as target. Bioorg Med Chem Lett 2004;14(15):4001-4
  • Shangguan D, Li Y, Tan W, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. PNAS 2006;103(32):11838-43
  • Tang Z, Shangguan D, Wang K, et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 2007;79(13):4900-7
  • Van Simaeys D, López-Colón D, Sefah K, et al. Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX. PLoS One 2010;5(11):e13770
  • Burbulis I, Yamaguchi K, Yu R, et al. Quantifying small numbers of antibodies with a ’near-universal’ protein-DNA chimera. Nat Methods 2007;4(12):1011-13
  • Ferreira C, Papamichael K, Guilbault G, et al. DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem 2008;390(4):1039-50
  • Lee JH, Wernette DP, Yigit MV, et al. Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem 2007;119(47):9164-8
  • Luo AL, Gong YJ, Yuan Y, et al. A simple and pH-independent and ultrasensitive fluorescent probe for the rapid detection of Hg. Talanta 2013;117:326-32
  • Qiu L, Wu C, You M, et al. A Targeted, self-delivered, and photocontrolled molecular beacon for mrna detection in living cells. J Am Chem Soc 2013;135(35):12952-5
  • Liu J, Liu H, Sefah K, et al. Selection of aptamers specific for adipose tissue. PLoS One 2012;7(5):e37789
  • Zhang K, Sefah K, Tang L, et al. A novel aptamer developed for breast cancer cell internalization. ChemMedChem 2012;7(1):79-84
  • Yang X, Li X, Prow TW, et al. Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Res 2003;31(10):e54-4
  • Tok J, Lai J, Leung T, et al. Selection of aptamers for signal transduction proteins by capillary electrophoresis. Electrophoresis 2010;31(12):2055-62
  • Misono TS, Kumar PK. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 2005;342(2):312-17
  • Miyachi Y, Shimizu N, Ogino C, et al. New SELEX strategy for screening of DNA aptamer by AFM. J Biosci Bioeng 2009;108:S64
  • Miyachi Y, Shimizu N, Ogino C, et al. Selection of DNA aptamers using atomic force microscopy. Nucleic Acids Res 2010;38(4):e21-1
  • Sefah K, Shangguan D, Xiong X, et al. Development of DNA aptamers using Cell-SELEX. Nat Protoc 2010;5(6):1169-85
  • Sefah K, Tang Z, Shangguan D, et al. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 2009;23(2):235-44
  • Zhao Z, Xu L, Shi X, et al. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 2009;134(9):1808-14
  • Mallikaratchy P, Tang Z, Kwame S, et al. Aptamer directly evolved from live cells recognizes membrane bound immunoglobulin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 2007;6(12):2230-8
  • Shangguan D, Cao Z, Meng L, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 2008;7(5):2133-9
  • Eyetech Study Group. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 2003;110(5):979-86
  • Sullenger BA, Gallardo HF, Ungers GE, et al. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 1990;63(3):601-8
  • Dobrovolsky A, Titaeva E, Khaspekova S, et al. Inhibition of thrombin activity with DNA-aptamers. Bull Exp Biol Med 2009;148(1):33-6
  • Hasegawa H, Taira K-I, Sode K, et al. Improvement of aptamer affinity by dimerization. Sensors 2008;8(2):1090-8
  • Bates PJ, Kahlon JB, Thomas SD, et al. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 1999;274(37):26369-77
  • Soundararajan S, Chen W, Spicer EK, et al. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 2008;68(7):2358-65
  • Rosenberg JE, Bambury RM, Van Allen EM, et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs 2014;32:178-87
  • Parak WJ, Gerion D, Pellegrino T, et al. Biological applications of colloidal nanocrystals. Nanotechnology 2003;14(7):R15
  • Pankhurst QA, Connolly J, Jones S, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003;36(13):R167
  • Wang J. Nanomaterial-based electrochemical biosensors. Analyst 2005;130(4):421-6
  • Cuenot S, Frétigny C, Demoustier-Champagne S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 2004;69(16):165410
  • Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56(2):185-229
  • Fan P, Suri AK, Fiala R, et al. Molecular recognition in the FMN–RNA aptamer complex. J Mol Biol 1996;258(3):480-500
  • Lupold SE, Hicke BJ, Lin Y, et al. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 2002;62(14):4029-33
  • Liu H, Moy P, Kim S, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 1997;57(17):3629-34
  • Bagalkot V, Farokhzad OC, Langer R, et al. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed 2006;45(48):8149-52
  • Zhu G, Meng L, Ye M, et al. Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem Asian J 2012;7(7):1630-6
  • Hu Y, Duan J, Zhan Q, et al. Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS One 2012;7(2):e31970
  • Meng L, Yang L, Zhao X, et al. Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One 2012;7(4):e33434
  • Tong GJ, Hsiao SC, Carrico ZM, et al. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 2009;131(31):11174-8
  • Xiao Z, Shangguan D, Cao Z, et al. Cell-specific internalization study of an aptamer from whole cell selection. Chemistry 2008;14(6):1769-75
  • Huang YF, Shangguan D, Liu H, et al. Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. Chembiochem 2009;10(5):862-8
  • Boyacioglu O, Stuart CH, Kulik G, et al. Dimeric DNA aptamer complexes for high-capacity–targeted drug delivery using ph-sensitive covalent linkages. Mol Ther Nucleic Acids 2013;2(7):e107
  • Cao Z, Tong R, Mishra A, et al. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 2009;48(35):6494-8
  • Alemdaroglu FE, Alemdaroglu NC, Langguth P, et al. Cellular uptake of DNA block copolymer micelles with different shapes. Macromol Rapid Commun 2008;29(4):326-9
  • Wu Y, Sefah K, Liu H, et al. DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci USA 2010;107(1):5-10
  • Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells. Cancer Res 2004;64(21):7668-72
  • West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 2003;5(1):285-92
  • Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128(6):2115-20
  • Huang X, Jain PK, El-Sayed IH, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008;23(3):217-28
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104(1):293-346
  • Zharov VP, Galitovskaya E, Viegas M. Photothermal guidance for selective photothermolysis with nanoparticles. Proc SPIE 2004;5319:291-300
  • Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49(18):N309
  • Zharov VP, Galitovskaya EN, Johnson C, et al. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 2005;37(3):219-26
  • Khlebtsov B, Zharov V, Melnikov A, et al. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 2006;17(20):5167
  • Takahashi H, Niidome T, Nariai A, et al. Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 2006;35(5):500-1
  • Takahashi H, Niidome T, Nariai A, et al. Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 2006;17(17):4431
  • Huff TB, Tong L, Zhao Y, et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007;2(1):125-32
  • Hirsch LR, Stafford R, Bankson J, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100(23):13549-54
  • Lin A, Hirsch L, Lee M-H, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004;3(1):33-40
  • O’Neal DP, Hirsch LR, Halas NJ, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004;209(2):171-6
  • Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5(4):709-11
  • Chen J, Wiley B, Li ZY, et al. Gold nanocages: engineering their structure for biomedical applications. Adv Mater 2005;17(18):2255-61
  • Hu M, Petrova H, Chen J, et al. Ultrafast laser studies of the photothermal properties of gold nanocages. J Phys Chem B 2006;110(4):1520-4
  • Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005;102(33):11600-5
  • Huang YF, Sefah K, Bamrungsap S, et al. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 2008;24(20):11860-5
  • Beqa L, Fan Z, Singh AK, et al. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl Mater Interface 2011;3(9):3316-24
  • Wang J, Sefah K, Altman MB, et al. Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chem Asian J 2013;8(10):2417-22
  • Wu P, Gao Y, Zhang H, et al. Aptamer-guided silver–gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal Chem 2012;84(18):7692-9
  • Choi J, Park Y, Choi EB, et al. Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer. J Biomed Opt 2014;19(5):051203-3
  • Kang H, O’Donoghue MB, Liu H, et al. A liposome-based nanostructure for aptamer directed delivery. Chem Commun 2010;46(2):249-51
  • Xing H, Tang L, Yang X, et al. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J Mater Chem B Mater Biol Med 2013;1(39):5288-97
  • Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7(10):3065-70
  • Savla R, Taratula O, Garbuzenko O, et al. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 2011;153(1):16-22
  • Li N, Larson T, Nguyen HH, et al. Directed evolution of gold nanoparticle delivery to cells. Chem Commun 2010;46(3):392-4
  • McNamara JO, Andrechek ER, Wang Y, et al. Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006;24(8):1005-15
  • Kim E, Jung Y, Choi H, et al. Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 2010;31(16):4592-9
  • Zhou J, Li H, Li S, et al. Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol Ther 2008;16(8):1481-9
  • Wang R, Zhu G, Mei L, et al. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J Am Chem Soc 2014;136:2731-4
  • Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 2013;110:7998-8003
  • Yuan Q, Wu Y, Wang J, et al. Engineering a targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier with near-infrared light. Angew Chem Int Ed 2013;52:13965-9
  • Hu R, Zhang X, Zhao Z, et al. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Int Ed 2014;53:5821-6
  • Zhao Z, Meng H, Wang H, et al. A nanocarrier with pHe-driven targeting and translocating for drug delivery. Angew Chem Int Ed 2013;52:7487-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.