451
Views
24
CrossRef citations to date
0
Altmetric
Review

Elastin-like polypeptide for improved drug delivery for anticancer therapy: preclinical studies and future applications

& , Ph D

Bibliography

  • Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2014;1845(1):84-9
  • Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 2001;6(1):34-55
  • Schlom J. Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 2012;104(8):599-613
  • Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Science 2013;341(6151):1192-8
  • Mauro MJ, Druker BJ. STI571: targeting BCR-ABL as therapy for CML. Oncologist 2001;6(3):233-8
  • Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001;37(13):1590-8
  • Huang S, Armstrong EA, Benavente S, et al. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR) combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 2004;64(15):5355-62
  • Takakura Y, Hashida M. Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Crit Rev Oncol Hematol 1995;18(3):207-31
  • Matsumura Y. Polymeric micellar delivery systems in oncology. Jpn J Clin Oncol 2008;38(12):793-802
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013;65(1):36-48
  • Kotla NG, Gulati M, Singh SK, Shivapooja A. Facts, fallacies and future of dissolution testing of polysaccharide based colon specific drug delivery. J Control Release 2014;178:55-62
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res1986;46(12 Part 1):6387-92
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2-25
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41(1):189-207
  • Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 2007;15(7-8):457-64
  • Lammers T. Improving the efficacy of combined modality anticancer therapy using HPMA copolymer-based nanomedicine formulations. Adv Drug Deliv Rev 2010;62(2):203-30
  • Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 2011;63(3):161-9
  • Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012;161(2):175-87
  • Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004;5(5):292-302
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2(10):750-63
  • Ninomiya K, Yamashita T, Kawabata S, Shimizu N. Targeted and ultrasound-triggered drug delivery using liposomes co-modified with cancer cell-targeting aptamers and a thermosensitive polymer. Ultrason Sonochem 2014;21(4):1482-8
  • Floss DM, Schallau K, Rose-John S, et al. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol 2010;28(1):37-45
  • McDaniel JR, Callahan DJ, Chilkoti A. Drug delivery to solid tumors by elastin-like polypeptides. Adv Drug Deliv Rev 2010;62(15):1456-67
  • Ryu JS, Kuna M, Raucher D. Penetrating the cell membrane, thermal targeting and novel anticancer drugs: the development of thermally targeted, elastin-like polypeptide cancer therapeutics. Ther deliv 2014;5(4):429-45
  • Rincon A, Molina-Martinez I, de Las Heras B, et al. Biocompatibility of elastin‐like polymer poly (VPAVG) microparticles: in vitro and in vivo studies. Journal of Biomedical Materials Research Part A 2006;78(2):343-51
  • Simnick AJ, Lim DW, Chow D, Chilkoti A. Biomedical and biotechnological applications of elastin-like polypeptides. J Macromol Sci, Part C: polymer Rev 2007;47(1):121-54
  • Reguera J, Urry DW, Parker TM, et al. Effect of NaCl on the exothermic and endothermic components of the inverse temperature transition of a model elastin-like polymer. Biomacromolecules 2007;8(2):354-8
  • Urry DW, Gowda DC, Parker TM, et al. Hydrophobicity scale for proteins based on inverse temperature transitions. Biopolymers 1992;32(9):1243-50
  • Reiersen H, Clarke AR, Rees AR. Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering. J Mol Biol 1998;283(1):255-64
  • Schipperus R, Eggink G, de Wolf FA. Secretion of elastin-like polypeptides with different transition temperatures by Pichia pastoris. Biotechnol Prog 2011;28(1):242-7
  • Urry DW, Luan C-H, Parker TM, et al. Temperature of polypeptide inverse temperature transition dependes on mean residue hydrophobidity. J Am Chem Soc 1991;113(11):4346-38
  • Ciofani G, Genchi GG, Mattoli V, et al. The potential of recombinant human elastin-like polypeptides for drug delivery. Expert Opin Drug Deliv 2014(0):1-6
  • Bandiera A, Taglienti A, Micali F, et al. Expression and characterization of human-elastin-repeat-based temperature‐responsive protein polymers for biotechnological purposes. Biotechnol Appl Biochem 2005;42(3):247-56
  • Meyer DE, Chilkoti A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 1999;17(11):1112-15
  • Martinez-Osorio H, Juarez-Campo M, Diebold Y, et al. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Curr Eye Res 2009;34(1):48-56
  • Betre H, Ong SR, Guilak F, et al. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 2006;27(1):91-9
  • Patel J, Zhu H, Menassa R, et al. Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 2007;16(2):239-49
  • Ge X, Trabbic-Carlson K, Chilkoti A, Filipe CD. Purification of an elastin‐like fusion protein by microfiltration. Biotechnol Bioeng 2006;95(3):424-32
  • Hassouneh W, Christensen T, Chilkoti A. Elastin-like polypeptides as a purification tag for recombinant proteins. Curr Protoc Protein Sci 2010;10.1002/0471140864.ps0611s61
  • Tian L, Sun SS. A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform. PLoS One 2011;6(8):e24183
  • Betre H, Setton LA, Meyer DE, Chilkoti A. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules 2002;3(5):910-16
  • Amruthwar SS, Janorkar AV. In vitro evaluation of elastin-like polypeptide–collagen composite scaffold for bone tissue engineering. Dent Mater 2013;29(2):211-20
  • Bandiera A, Markulin A, Corich L, et al. Stimuli-induced release of compounds from elastin biomimetic matrix. Biomacromolecules 2013;15(1):416-22
  • Choi SK, Park JK, Lee KM, et al. Improved neural progenitor cell proliferation and differentiation on poly (lactide-co-glycolide) scaffolds coated with elastin‐like polypeptide. J Biomed Mater Res B Appl Biomater 2013;101(8):1329-39
  • Ciofani G, Genchi GG, Guardia P, et al. Recombinant human elastin-like magnetic microparticles for drug delivery and targeting. Macromol Biosci 2014;14(5):632-42
  • Raucher D, Chilkoti A. Enhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition. Cancer Res 2001;61(19):7163-70
  • Meyer DE, Kong GA, Dewhirst MW, et al. Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 2001;61(4):1548-54
  • MacKay JA, Chen M, McDaniel JR, et al. Self-assembling chimeric polypeptide–conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 2009;8(12):993-9
  • Meyer DE, Shin BC, Kong GA, et al. Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 2001;74(1-3):213-24
  • Chilkoti A, Dreher MR, Meyer DE, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 2002;54(5):613-30
  • Dreher MR, Liu W, Michelich CR, et al. Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors. Cancer Res 2007;67(9):4418-24
  • Ryu JS, Raucher D. Elastin-like polypeptides: the influence of its molecular weight on local hyperthermia-induced tumor accumulation. Eur J Pharm Biopharm 2014
  • Bidwell GLIII, Perkins E, Raucher D. A thermally targeted c-Myc inhibitory polypeptide inhibits breast tumor growth. Cancer Lett 2012;319(2):136-43
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007;32(8):762-98
  • Dreher MR, Raucher D, Balu N, et al. Evaluation of an elastin-like polypeptide–doxorubicin conjugate for cancer therapy. J Control Release 2003;91(1):31-43
  • Moktan S, Ryppa C, Kratz F, Raucher D. A thermally responsive biopolymer conjugated to an acid-sensitive derivative of paclitaxel stabilizes microtubules, arrests cell cycle, and induces apoptosis. Invest New Drugs 2012;30(1):236-48
  • Rodrigues PC, Scheuermann K, Stockmar C, et al. Synthesis and in vitro efficacy of acid-sensitive poly (ethylene glycol) paclitaxel conjugates. Bioorg Med Chem Lett 2003;13(3):355-60
  • Moktan S, Raucher D. Anticancer activity of proapoptotic peptides is highly improved by thermal targeting using elastin-like polypeptides. Int J Pept Res Ther 2012;18(3):227-37
  • Bidwell GL, Raucher D. Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy. Mol Cancer Ther 2005;4(7):1076-85
  • Li Lten Hagen TL, Haeri A, et al. A novel two-step mild hyperthermia for advanced liposomal chemotherapy. J Control Release 2014;174:202-8
  • Limmer S, Hahn J, Schmidt R, et al. Gemcitabine treatment of rat soft tissue sarcoma with phosphatidyldiglycerol-based thermosensitive liposomes. Pharm Res 2014;1-11
  • Koning GA, Eggermont AM, Lindner LH, ten Hagen TL. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res 2010;27(8):1750-4
  • Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3(8):487-97
  • Landon CD, Park JY, Needham D, Dewhirst MW. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J 2011;3:38-64
  • Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release 2013;169(1-2):112-25
  • Sebbage V. Cell-penetrating peptides and their therapeutic applications. Biosciencehorizons 2009;2:64-72
  • Massodi I, Bidwell GLIII, Raucher D. Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery. J Control Release 2005;108(2):396-408
  • Bidwell GLIII, Davis AN, Raucher D. Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides. J Control Release 2009;135(1):2-10
  • Bidwell GLIII, Whittom AA, Thomas E, et al. A thermally targeted peptide inhibitor of symmetrical dimethylation inhibits cancer-cell proliferation. Peptides 2010;31(5):834-41
  • Massodi I, Moktan S, Rawat A, et al. Inhibition of ovarian cancer cell proliferation by a cell cycle inhibitory peptide fused to a thermally responsive polypeptide carrier. Int J Cancer 2010;126(2):533-44
  • Bidwell GLIII, Perkins E, Hughes J, et al. Thermally targeted delivery of a c-Myc inhibitory polypeptide inhibits tumor progression and extends survival in a rat glioma model. PLoS One 2013;8(1):e55104
  • Ryu JS, Raucher D. Anti-tumor efficacy of a therapeutic peptide based on thermo-responsive elastin-like polypeptide in combination with gemcitabine. Cancer Lett 2014;348(1-2):177-84
  • Massodi I, Thomas E, Raucher D. Application of thermally responsive elastin-like polypeptide fused to a lactoferrin-derived peptide for treatment of pancreatic cancer. Molecules 2009;14(6):1999-2015
  • Prochownik EV. c-Myc as a therapeutic target in cancer. Expert Rev Anticancer Ther 2004;4(2):289-302
  • Giorello L, Clerico L, Pescarolo MP, et al. Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence. Cancer Res 1998;58(16):3654-9
  • Zou LL, Ma JL, Wang T, et al. Cell-Penetrating Peptide-Mediated Therapeutic Molecule Delivery into the Central Nervous System. Curr Neuropharmacol 2013;11(2):197-208
  • Hearst SM, Walker LR, Shao Q, et al. The design and delivery of a thermally responsive peptide to inhibit S100B-mediated neurodegeneration. Neuroscience 2011;197:369-80
  • Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 2002;1(8):639-49
  • Mattock H, Lane DP, Warbrick E. Inhibition of cell proliferation by the PCNA-binding region of p21 expressed as a GFP miniprotein. Exp Cell Res 2001;265(2):234-41
  • Mikecin A-M, Walker LR, Kuna MRaucher D. Thermally targeted p21 peptide enhances bortezomib cytotoxicity in androgen-independent prostate cancer cell lines. Anticancer Drugs 2014;25(2):189-99
  • Butz J, Wickstrom E, Edwards J. Characterization of mutations and loss of heterozygosity of p53 and K-ras2 in pancreatic cancer cell lines by immobilized polymerase chain reaction. BMC Biotechnol 2003;3:11
  • Anirban Maitra RHH. Pancreatic cancer. Ann Rev Pathol 2008;3:157-88
  • Medicine® USNLo. Spinocerebellar ataxia type 1. 2011. Available from: http://ghr.nlm.nih.gov/condition/spinocerebellar-ataxia-type-1 [Cited 2011]
  • VIG PJ, LOPEZ ME, Jinrong W, et al. Glial S100B positive vacuoles in Purkinje cells: earliest morphological abnormality in SCA1 transgenic mice. J Neurol Sci Turish 2006;23(3):166
  • Ryu J, Cho S, Park BC, Lee DH. Oxidative stress-enhanced SUMOylation and aggregation of ataxin-1: implication of JNK pathway. Biochem Biophys Res Commun 2010;393(2):280-5
  • Vig PJ, Shao Q, Subramony S, et al. Bergmann glial S100B activates myo-inositol monophosphatase 1 and co-localizes to Purkinje cell vacuoles in SCA1 transgenic mice. The Cerebellum 2009;8(3):231-44
  • Adami C, Bianchi R, Pula G, Donato R. S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2004;1742(1):169-77
  • Frizzo JK, Tramontina F, Bortoli E, et al. S100B-mediated inhibition of the phosphorylation of GFAP is prevented by TRTK-12. Neurochem Res 2004;29(4):735-40
  • Ivanenkov VV, Jamieson GA, Gruenstein E, Dimlich RV. Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein. CapZ. Journal of biological chemistry 1995;270(24):14651-8
  • Vig PJ, Hearst S, Shao Q, et al. Glial S100B protein modulates mutant ataxin-1 aggregation and toxicity: TRTK12 peptide, a potential candidate for SCA1 therapy. The Cerebellum 2011;10(2):254-66
  • Bidwell GLIII, Davis AN, Fokt I, et al. A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Invest New Drugs 2007;25(4):313-26
  • Bidwell GLIII, Fokt I, Priebe W, Raucher D. Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem Pharmacol 2007;73(5):620-31
  • Walker L, Perkins E, Kratz F, Raucher D. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int J Pharm 2012;436(1):825-32
  • Moktan S, Perkins E, Kratz F, Raucher D. Thermal targeting of an acid-sensitive doxorubicin conjugate of elastin-like polypeptide enhances the therapeutic efficacy compared with the parent compound in vivo. Mol Cancer Ther 2012;11(7):1547-56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.