653
Views
13
CrossRef citations to date
0
Altmetric
Review

The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering

, BPharm M.Phil, , BPharm (Hons), , BDS MSc PhD, , PhD DSc & , PhD DSc (Professor of Pharmaceutics)

Bibliography

  • MacEwan SR, Callahan DJ, Chilkoti A. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine 2010;5(5):793–806
  • Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target 2008;16(2):108-23
  • Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol 2007;25(12):563-70
  • Wang YB, Watts AB, Peters JI, et al. The impact of pulmonary diseases on the fate of inhaled medicines—A review. Int J Pharm 2014;461(1–2):112-28
  • Deepa G, Ashwanikumar N, Pillai JJ, et al. Polymer nanoparticles–a novel strategy for administration of Paclitaxel in cancer chemotherapy. Curr Med Chem 2012;19(36):6207-13
  • Hasan AS, Socha M, Lamprecht A, et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm 2007;344(1-2):53-61
  • Brown JR, O’Donnell JH. γ Radiolysis of Poly(butene-1 sulfone)and Poly(hexane-1 sulfone). Macromolecules 1972;5(2):109-14
  • Chen L, Goh YK, Cheng HH, et al. Aqueous developable dual switching photoresists for nanolithography. J Polym Sci Pol Chem 2012;50(20):4255-65
  • Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as nove l agents for cancer therapy. Br J Radiol 2012;85(1010):101-13
  • Kemeny N, Huang Y, Cohen AM, et al. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med 1999;341(27):2039-48
  • Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin 2013;63(6):395-418
  • Price AR, Limberis MP, Wilson JM, et al. Pulmonary delivery of adenovirus vector formulated with dexamethasone-spermine facilitates homologous vector re-administration. Gene Ther 2007;14(22):1594-604
  • Consumer Care, Additives for Home Care and Personal Care Products. Southern Clay Products, Inc; ed. Rockwood Additives Limited; Widnes, Cheshire, UK: 2007
  • Kondyurin A, Nosworthy NJ, Bilek MM. Effect of low molecular weight additives on immobilization strength, activity, and conformation of protein immobilized on PVC and UHMWPE. Langmuir 2011;27(10):6138-48
  • Springer BD, Odum S, Fehring T, et al. Why revision total hip arthroplasty fails. J Arthroplasty 2008;23(2):322
  • Najib E, Puranik R, Duflou J, et al. Age related inflammatory characteristics of coronary artery disease. Int J Cardiol 2012;154(1):65-70
  • Namkung-Matthai H, Appleyard R, Jansen J, et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 2001;28(1):80-6
  • McMinn DJW, Snell KIE, Daniel J, et al. Mortality and implant revision rates of hip arthroplasty in patients with osteoarthritis: registry based cohort study. BMJ 2012;344:e3319
  • Hu X, Kaplan DL. 2.212 - Silk Biomaterials. In: Paul D, editor. Comprehensive biomaterials. Elsevier; Oxford: 2011. p. 207-19
  • Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. J Control Release 2011;150(2):128-41
  • Chen M, Shao Z, Chen X. Paclitaxel-loaded silk fibroin nanospheres. J Biomed Mater Res A 2012;100(1):203-10
  • Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, et al. Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 2012;12(1):75-82
  • Seib FP, Kaplan DL. Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials 2012;33(33):8442-50
  • Curtis A, Riehle M. Tissue engineering: the biophysical background. Phys Med Biol 2001;46(4):R47-65
  • Armentano I, Dottori M, Fortunati E, et al. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 2010;95(11):2126-46
  • Chang C-W, van Spreeuwel A, Zhang C, et al. PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 2010;6(20):5157-64
  • Alghamdi HS, Bosco R, van den Beucken JJ, et al. Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials 2013;34(15):3747-57
  • Sachse A, Wagner A, Keller M, et al. Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep. Bone 2005;37(5):699-710
  • Xi T, Gao R, Xu B, et al. In vitro and in vivo changes to PLGA/sirolimus coating on drug eluting stents. Biomaterials 2010;31(19):5151-8
  • Fredenberg S, Wahlgren M, Reslow M, et al. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm 2011;415(1–2):34-52
  • Taratula O, Kuzmov A, Shah M, et al. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release 2013;171(3):349-57
  • Kusumoto K, Akita H, Ishitsuka T, et al. Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium. ACS Nano 2013;7(9):7534-41
  • Wauthoz N, Amighi K. Phospholipids in pulmonary drug delivery. Eur J Lipid Sci Technol 2014;116(9):1114-28
  • Tomoda K, Terashima H, Suzuki K, et al. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf B Biointerfaces 2012;92:50-4
  • Lü JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9(4):325-41
  • Mohammadi-Samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol 2014. [ Epub ahead of print]
  • Xiong S, Zhao X, Heng BC, et al. Cellular uptake of Poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method. Biotechnol J 2011;6(5):501-8
  • Brandl F, Hammer N, Blunk T, et al. Biodegradable hydrogels for time-controlled release of tethered peptides or proteins. Biomacromolecules 2010;11(2):496-504
  • Brandl FP, Seitz AK, Tessmar JK, et al. Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering. Biomaterials 2010;31(14):3957-66
  • Annabi N, Mithieux SM, Weiss AS, et al. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials 2010;31(7):1655-65
  • Hu X, Wang X, Rnjak J, et al. Biomaterials derived from silk–tropoelastin protein systems. Biomaterials 2010;31(32):8121-31
  • Tresguerres IF, Clemente C, Donado M, et al. Local administration of growth hormone enhances periimplant bone reaction in an osteoporotic rabbit model. Clin Oral Implants Res 2002;13(6):631-6
  • Lochab J, Cheema U, Mudera V. Enhancing the mechanical properties of 3D biomimetic type I collagen scaffolds using restricted plastic compression for musculoskeletal engineering. Int J Surg 2010;8(7):1
  • Grant CA, Twigg PC, Tobin DJ. Static and dynamic nanomechanical properties of human skin tissue using atomic force microscopy: effect of scarring in the upper dermis. Acta Biomater 2012;8(11):4123-9
  • Silva NHCS, Vilela C, Marrucho IM, et al. Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J Mater Chem B 2014;2(24):3715-40
  • Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 2007;28(2):134-46
  • NG KW, Hartrianti P. Method of preparing a keratin-based biomaterial and keratin-based biomaterial formed thereof. Google Patents WO2014112950A1; 2014
  • Hutmacher DW, Ng KW, Kaps C, et al. Elastic cartilage engineering using novel scaffold architectures in combination with a biomimetic cell carrier. Biomaterials 2003;24(24):4445-58
  • Ng KW, Hutmacher DW. Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials 2006;27(26):4591-8
  • Leong DT, Ng KW. Probing the relevance of 3D cancer models in nanomedicine research. Adv Drug Deliv Rev 2014. [ Epub ahead of print]
  • Waterhouse A, Wise SG, Yin Y, et al. In vivo biocompatibility of a plasma-activated, coronary stent coating. Biomaterials 2012;33(32):7984-92
  • Asgharian B, Price O. Airflow distribution in the human lung and its influence on particle deposition. Inhal Toxicol 2006;18:795-801
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 2007;6(1):67-74
  • Hoe S, Young PM, Traini D. A review of electrostatic measurement techniques for aerosol drug delivery to the lung: implications in aerosol particle deposition. J Adhes Sci Technol 2011;25(4-5):385-405
  • De Boer AH, Chan HK, Price R. A critical view on lactose-based drug formulation and device studies for dry powder inhalation: which are relevant and what interactions to expect? Adv Drug Deliv Rev 2012;64(3):257-74
  • Pan D, Turner JL, Wooley KL. Folic acid-conjugated nanostructured materials designed for cancer cell targeting. Chem Commun (Camb) 2003(19):2400-1
  • Cortez C, Tomaskovic-Crook E, Johnston APR, et al. Targeting and uptake of multilayered particles to colorectal cancer cells. Adv Mater 2006;18(15):1998
  • Gobin AS, Rhea R, Newman RA, et al. Silk-fibroin-coated liposomes for long-term and targeted drug delivery. Int J Nanomedicine 2006;1(1):81-7
  • Zhao W, Karp JM. Tumour targeting: nanoantennas heat up. Nat Mater 2009;8(6):453-4
  • Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010;132(13):4678-84
  • Teow Y, Valiyaveettil S. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2010;2(12):2607-13
  • Florczak A, Mackiewicz A, Dams-Kozlowska H. Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromolecules 2014;15(8):2971-81
  • Lu Y, Wu P, Yin Y, et al. Aptamer-functionalized graphene oxide for highly efficient loading and cancer cell-specific delivery of antitumor drug. J Mater Chem B 2014;2(24):3849-59
  • Lau YH, de Andrade P, Quah ST, et al. Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem Sci 2014;5(5):1804-9
  • Chrzanowski W, Khademhosseini A. Biologically inspired ’smart’ materials. Adv Drug Deliv Rev 2013;65(4):403-4
  • Chrzanowski W, Kondyurin A, Lee JH, et al. Biointerface: protein enhanced stem cells binding to implant surface. J Mater Sci Mater Med 2012;23(9):2203-15
  • Bilek MMM, Bax DV, Kondyurin A, et al. Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. National Academy of Sciences 2011. 108(35):14405-10
  • Chan HK, Chew NY. Novel alternative methods for the delivery of drugs for the treatment of asthma. Adv Drug Deliv Rev 2003;55(7):793-805
  • Chow AL, Tong HY, Chattopadhyay P, et al. Particle Engineering for Pulmonary Drug Delivery. Pharm Res 2007;24(3):411-37
  • Ma T. Acellular biomaterials in mesenchymal stem cell-mediated endogenous tissue regeneration. J Mater Chem B 2014;2(1):31-5
  • Nagao RJ, Ouyang Y, Keller R, et al. Preservation of capillary-beds in rat lung tissue using optimized chemical decellularization. J Mater Chem B 2013;1(37):4801-8
  • Balestrini JL, Chaudhry S, Sarrazy V, et al. The mechanical memory of lung myofibroblasts. Integr Biol (Camb) 2012;4(4):410-21
  • Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 2014;20(8):822-32
  • Beers MF, Morrisey EE. The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 2011;121(6):2065-73
  • Kojima K, Vacanti CA. Tissue engineering in the trachea. Anat Rec (Hoboken) 2014;297(1):44-50
  • Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 2012;380(9846):994-1000
  • Bonvillain RW, Danchuk S, Sullivan DE, et al. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A 2012;18(23-24):2437-52
  • Price AP, England KA, Matson AM, et al. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 2010;16(8):2581-91
  • Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. The Lancet 2008;372(9655):2023-30
  • Rajagopal K, Watkins AC, Gibber M, et al. Reoperative Lung Transplantation for Donor-Derived Pulmonary Mucormycosis. Ann Thorac Surg 2014;98(1):327-9
  • Dierich M, Tecklenburg A, Fuehner T, et al. The influence of clinical course after lung transplantation on rehabilitation success. Transpl Int 2013;26(3):322-30
  • Pettersson GB, Karam K, Thuita L, et al. Comparative study of bronchial artery revascularization in lung transplantation. J Thorac Cardiovasc Surg 2013;146(4):894-900.e3
  • Stadelmann VA, Gauthier O, Terrier A, et al. Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study. Eur Cell Mater 2008;16:10-16
  • Numata K, Kaplan DL. Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev 2010;62(15):1497-508
  • Romer L, Scheibel T. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2008;2(4):154-61
  • Kundu B, Rajkhowa R, Kundu SC, et al. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013;65(4):457-70
  • Kundu SC, Dash BC, Dash R, et al. Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Prog Polym Sci 2008;33(10):998-1012
  • Kundu SC, Kundu B, Talukdar S, et al. Invited review nonmulberry silk biopolymers. Biopolymers 2012;97(6):455-67
  • Kim UJ, Park J, Joo Kim H, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005;26(15):2775-85
  • Kundu J, Chung Y-I, Kim YH, et al. Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 2010;388(1–2):242-50
  • Hazeri N, Tavanai H, Moradi AR. Production and properties of electrosprayed sericin nanopowder. Sci Technol Adv Mater 2012;13(3):035010
  • Cao Y, Wang B. Biodegradation of Silk Biomaterials. Int J Mol Sci 2009;10(4):1514-24
  • Nayak S, Talukdar S, Kundu SC. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering. Cell Tissue Res 2012;347(3):783-94
  • Administration USFaD. Guidance for Industry and FDA Staff - Class II Special Controls Guidance Document: Surgical Sutures. 2003. Available from: http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm072698.htm [Last accessed 03 August 2014]
  • Companies EPotJJFo. PERMA-HAND® Silk Suture. Wound Closure: Non-Absorbable Sutures. 2014. Available from: http://www.ethicon.com/healthcare-professionals/products/wound-closure/non-absorbable-sutures/perma-hand-silk [Last accessed 05 August 2014]
  • Dash BC, Mandal BB, Kundu SC. Silk gland sericin protein membranes: fabrication and characterization for potential biotechnological applications. J Biotechnol 2009;144(4):321-9
  • Qu J, Wnag L, Hu Y, et al. Preparation of Silk Fibroin Microspheres and Its Cytocompatibility. J Biomater Nanobiotechnol 2013;4(1):84-90
  • Chirila T, Suzuki S, Bray L, et al. Evaluation of silk sericin as a biomaterial: in vitro growth of human corneal limbal epithelial cells on Bombyx mori sericin membranes. Prog Biomater 2013;2(1):1-10
  • Das S, Bora U, Borthakur BB. Applications of silk biomaterials in tissue engineering and regenerative medicine. In: Kundu SC, editor. Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing Limited; UK: 2014. p. 41-77
  • Bini E, Foo CWP, Huang J, et al. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 2006;7(11):3139-45
  • Numata K, Kaplan DL. Bioengineered silk protein-based nucleic acid delivery systems. Google Patents WO2011006133A2; 2012
  • Bray LJ, Suzuki S, Harkin D, et al. Incorporation of exogenous RGD peptide and inter-species blending as strategies for enhancing human corneal limbal epithelial cell growth on Bombyx mori silk fibroin membranes. J Funct Biomater 2013;4(2):74-88
  • Wang X, Wenk E, Hu X, et al. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 2007;28(28):4161-9
  • Zhang J, Pritchard E, Hu X, et al. Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proc Natl Acad Sci 2012;109(30):11981-6
  • Wenk E, Wandrey AJ, Merkle HP, et al. Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 2008;132(1):26-34
  • Wang X, Yucel T, Lu Q, et al. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 2010;31(6):1025-35
  • Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv 2011;8(6):797-811
  • Pritchard EM, Dennis PB, Omenetto F, et al. Physical and chemical aspects of stabilization of compounds in silk. Biopolymers 2012;97(6):479-98
  • Rajkhowa R, Wang X. Silk powder for regenerative medicine. In: Kundu SC, editor. Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing Limited; UK: 2014. p. 191-212
  • Wilz A, Pritchard E, Li T, et al. Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 2008;29:3609-16
  • Cheema SK, Gobin AS, Rhea R, et al. Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int J Pharm 2007;341(1-2):221-9
  • Seib FP, Kaplan DL. Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials 2012;33(33):8442-50
  • Bessa PC, Balmayor ER, Azevedo HS, et al. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regen Med 2010;4(5):349-55
  • Shi P, Goh JCH. Release and cellular acceptance of multiple drugs loaded silk fibroin particles. Int J Pharm 2011;420(2):282-9
  • Lammel AS, Hu X, Park S-H, et al. Controlling silk fibroin particle features for drug delivery. Biomaterials 2010;31(16):4583-91
  • Imsombut T, Srisa-ard M, Srihanam P, et al. Preparation of silk fibroin microspheres by emulsification-diffusion method for controlled release drug delivery applications. E-Polymers 2011;88:1-7
  • Gupta V, Aseh A, Rios C, et al. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine 2009;4:115-22
  • Subia B, Kundu SC. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers. Nanotechnology 2013;24(3):035103
  • Bhatia SK. COPD: Biomaterials for lung regeneration. Biomaterials for clinical applications. Springer; USA: 2010. p. 107-17
  • Chang G, Kim HJ, Kaplan D, et al. Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur Spine J 2007;16(11):1848-57
  • Kundu B, Rajkhowa R, Kundu SC, et al. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013;65(4):457-70
  • Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials 2003;24(3):401-16
  • Sell SA, Wolfe PS, Garg K, et al. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2010;2(4):522-53
  • Andrade CF, Wong AP, Waddell TK, et al. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol 2007;292:510-18
  • Genc G, Narin G, Bayraktar O. Spray drying as a method of producing silk sericin powders. J Achiev Mate Manuf Eng 2009;37(1):78-86
  • Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine 2009;4:299-319
  • D’Addio SM, Chan JGY, Kwok PCL, et al. Constant size, variable density aerosol particles by ultrasonic spray freeze drying. Int J Pharm 2012;427(2):185-91
  • Rouse JG, Van Dyke ME. A review of keratin-based biomaterials for biomedical applications. Materials 2010;3(2):999-1014
  • Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol 2008;129(6):705-33
  • Yamauchi K, Yamauchi A, Kusunoki T, et al. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res 1996;31(4):439-44
  • Katoh K, Tanabe T, Yamauchi K. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 2004;25(18):4255-62
  • Goddard DR, Michaelis L. A. study on Keratin. J Biol Chem 1934;106(2):605-14
  • Hill P, Brantley H, Van Dyke M. Some properties of keratin biomaterials: kerateines. Biomaterials 2010;31(4):585-93
  • Yewale C, Baradia D, Vhora I, et al. Proteins: emerging carrier for delivery of cancer therapeutics. Expert Opin Drug Deliv 2013;10(10):1429-48
  • Tanabe T, Okitsu N, Yamauchi K. Fabrication and characterization of chemically crosslinked keratin films. Mate Sci Eng C 2004;24(3):441-6
  • Katoh K, Shibayama M, Tanabe T, et al. Preparation and physicochemical properties of compression-molded keratin films. Biomaterials 2004;25(12):2265-72
  • Yamauchi K, Maniwa M, Mori T. Cultivation of fibroblast cells on keratin-coated substrata. J Biomater Sci Polym Ed 1998;9(3):259-70
  • Reichl S. Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 2009;30(36):6854-66
  • Tachibana A, Kaneko S, Tanabe T, et al. Rapid fabrication of keratin–hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 2005;26(3):297-302
  • Garg T, Goyal AK. Biomaterial-based scaffolds–current status and future directions. Expert Opin Drug Deliv 2014;11(5):767-89
  • Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 2002;23(22):4325-32
  • Sando L, Kim M, Colgrave ML, et al. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. J Biomed Mater Res A 2010;95(3):901-11
  • Wang S, Taraballi F, Tan LP, et al. Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell Tissue Re 2012;347(3):795-802
  • Tachibana A, Furuta Y, Takeshima H, et al. Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 2002;93(2):165-70
  • Verma V, Verma P, Ray P, et al. Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater 2008;3(2):025007
  • Sierpinski P, Garrett J, Ma J, et al. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 2008;29(1):118-28
  • Poranki D, Whitener W, Howse S, et al. Evaluation of skin regeneration after burns in vivo and rescue of cells after thermal stress in vitro following treatment with a keratin biomaterial. J Biomater Appl 2013;29(1):26-35
  • Saul JM, Ellenburg MD, de Guzman RC, et al. Keratin hydrogels support the sustained release of bioactive ciprofloxacin. J Biomed Mater Res A 2011;98(4):544-53
  • Li Q, Zhu L, Liu R, et al. Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery. J Mater Chem 2012;22(37):19964-73
  • Liu Y, Hyde AS, Simpson MA, et al. Emerging regulatory paradigms in glutathione metabolism. Adv Cancer Res 2014;122:69-101
  • Hong R, Han G, Fernandez JM, et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 2006;128(4):1078-9
  • Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983;52:711-60
  • Ioannidou E. Therapeutic modulation of growth factors and cytokines in regenerative medicine. Curr Pharm Des 2006;12(19):2397-408
  • Apel PJ, Garrett JP, Sierpinski P, et al. Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model. J Hand Surg Am 2008;33(9):1541-7
  • Hill PS, Apel PJ, Barnwell J, et al. Repair of peripheral nerve defects in rabbits using keratin hydrogel scaffolds. Tissue engineering Part A 2011;17(11-12):1499-505
  • Pace LA, Plate JF, Smith TL, et al. The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 2013;34(24):5907-14
  • Pace LA, Plate JF, Mannava S, et al. A human hair keratin hydrogel scaffold enhances median nerve regeneration in nonhuman primates: an electrophysiological and histological study. Tissue engineering Part A 2014;20(3-4):507-17
  • Babu P, Behl A, Chakravarty B, et al. Entubulation techniques in peripheral nerve repair. The Indian Journal of Neurotrauma 2008;5(1):15-20
  • Zhang BG, Quigley AF, Myers DE, et al. Recent advances in nerve tissue engineering. Int J Artif Organs 2014;37(4):277-91
  • Cilurzo F, Selmin F, Aluigi A, Bellosta S. Regenerated keratin proteins as potential biomaterial for drug delivery. Polym Adv Technol 2013;24(11):1025-8
  • Lee SJ, Atala A. Scaffold technologies for controlling cell behavior in tissue engineering. Biomed Mater 2013;8(1):010201
  • O’Grady JE, Bordon DM. Global regulatory registration requirements for collagen-based combination products: points to consider. Adv Drug Deliv Rev 2003;55(12):1699-721
  • Abou Neel EA, Bozec L, Knowles JC, et al. Collagen - Emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013;65(4):429-56
  • Gelse K, Poschl E, Aigner T. Collagens–structure, function, and biosynthesis. Adv Drug Deliv Rev 2003;55(12):1531-46
  • Sittinger M, Bujia J, Rotter N, et al. Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials 1996;17(3):237-42
  • Suki B, Bates JH. Extracellular matrix mechanics in lung parenchymal diseases. Respir Physiol Neurobiol 2008;163(1-3):33-43
  • Chen JM, Little CD. Cellular events associated with lung branching morphogenesis including the deposition of collagen type IV. Dev Biol 1987;120(2):311-21
  • Suki B, Ito S, Stamenovic D, et al. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol (1985) 2005;98(5):1892-9
  • Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 2011;17(8):424-32
  • Badylak SF. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 1989;47(1):74-80
  • Merguerian PA, Reddy PP, Barrieras DJ, et al. Acellular bladder matrix allografts in the regeneration of functional bladders: evaluation of large-segment (> 24 cm(2)) substitution in a porcine model. BJU Int 2000;85(7):894-8
  • Wilshaw SP, Kearney JN, Fisher J, et al. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 2006;12(8):2117-29
  • Mahdavi Shahri N, Baharara J, Takbiri M, et al. In vitro Decellularization of Rabbit Lung Tissue. Cell J 2013;15(1):83-8
  • Petersen TH, Calle EA, Colehour MB, et al. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 2012;195(3):222-31
  • Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol 2008;20(2):109-16
  • Freytes DO, Badylak SF, Webster TJ, et al. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials 2004;25(12):2353-61
  • Nieponice A, Gilbert TW, Badylak SF. Reinforcement of esophageal anastomoses with an extracellular matrix scaffold in a canine model. Ann Thorac Surg 2006;82(6):2050-8
  • Badylak SF, Vorp DA, Spievack AR, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 2005;128(1):87-97
  • Gilbert TW, Stolz DB, Biancaniello F, et al. Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials 2005;26(12):1431-5
  • Choi JS, Yang HJ, Kim BS, et al. Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release 2009;139(1):2-7
  • Hodde J, Record R, Tullius R, et al. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 2002;23(8):1841-8
  • Jansen EJP, Sladek REJ, Bahar H, et al. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials 2005;26(21):4423-31
  • Rehfeldt F, Engler AJ, Eckhardt A, et al. Cell responses to the mechanochemical microenvironment - Implications for regenerative medicine and drug delivery. Adv Drug Deliv Rev 2007;59(13):1329-39
  • Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. In: Yarmush ML, Duncan JS, Gray ML, editors. Annual Review of Biomedical Engineering. Volume 13: Annual Reviews; Palo Alto: 2011. p. 27-53
  • Valentin J, Badylak J, McCabe G, et al. Extracellular matrix bioscaffolds for orthopaedic applications - A comparative histologic study. Journal of Bone and Joint Surgery; American volume 2006;88(12):2673-86
  • VoytikHarbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 1997;67(4):478-91
  • Yang C, Hillas PJ, Baez JA, et al. The application of recombinant human collagen in tissue engineering. BioDrugs 2004;18(2):103-19
  • Kuznetsova N, Leikin S. Does the triple helical domain of type I collagen encode molecular recognition and fiber assembly while telopeptides serve as catalytic domains? Effect of proteolytic cleavage on fibrillogenesis and on collagen–collagen interaction in fibers. J Biol Chem 1999;274:36083-8
  • Gross J, Highberger JH, Schimitt FO. Extraction of collagen from connective tissue by natural salt solution. Proceedings of the National Academy of Sciences 1955;41(1):1-7
  • Grant NH, Alburn HE. Collagen solubilization by mammalian proteinases. Arch BiochemBiophys 1960;89:262-70
  • Dombi GW, Halsall HB. Collagen fibril formation in the presence of sodium dodecyl sulphate. Biochem J 1985;228:551-6
  • Parkinson J, Kadler KE, Brass A. Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation. J Mol Biol 1994;247:823-31
  • Birk DE, Silver FH. Collagen fibrillogenesis in vitro:comparison of type I, II and II. Arch Biochem Biophys 1984;235:178-85
  • Abou Neel EA, Cheema U, Knowles JC, et al. Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter 2006;2(11):986
  • Brown RA, Wiseman M, Chuo CB, et al. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 2005;15(11):1762-70
  • Ruszczak Z, Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev 2003;55(12):1679-98
  • Piao ZG, Kim JS, Son JS, et al. Osteogenic evaluation of collagen membrane containing drug-loaded polymeric microparticles in a rat calvarial defect model. Tissue Eng Part A 2014. [ Epub ahead of print]
  • Hiwatashi N, Hirano S, Mizuta M, et al. Biocompatibility and efficacy of collagen/gelatin sponge scaffold with sustained release of basic fibroblast growth factor on vocal fold fibroblasts in 3-dimensional culture. Ann Otol Rhinol Laryngol 2014. [ Epub ahead of print]
  • Lauzon MA, Marcos B, Faucheux N. Effect of initial pBMP-9 loading and collagen concentration on the kinetics of peptide release and a mathematical model of the delivery system. J Control Release 2014;182:73-82
  • Hamilton PT, Jansen MS, Ganesan S, et al. Improved bone morphogenetic protein-2 retention in an injectable collagen matrix using bifunctional peptides. PLoS One 2013;8(8):e70715
  • Antiszko M, Grzybowski J, Tederko A, et al. [Collagen membranes of increased absorption as carriers of antiseptics]. Polim Med 1996;26(3-4):21-8
  • Gottumukkala SN, Sudarshan S, Mantena SR. Comparative evaluation of the efficacy of two controlled release devices: chlorhexidine chips and indigenous curcumin based collagen as local drug delivery systems. Contemp Clin Dent 2014;5(2):175-81
  • Mandal A, Sekar S, Kanagavel M, et al. Collagen based magnetic nanobiocomposite as MRI contrast agent and for targeted delivery in cancer therapy. Biochim Biophys Acta 2013;1830(10):4628-33
  • Zheng Y, Feng Z, You C, et al. In vitro evaluation of Panax notoginseng Rg1 released from collagen/chitosan-gelatin microsphere scaffolds for angiogenesis. Biomed Eng Online 2013;12:134
  • Sano A, Hojo T, Maeda M, et al. Protein release from collagen matrices. Adv Drug Deliv Rev 1998;31(3):247-66
  • Nicklas M, Schatton W, Heinemann S, et al. Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17beta-estradiol-hemihydrate. Drug Dev Ind Pharm 2009;35(9):1035-42
  • Curtin CM, Tierney EG, McSorley K, et al. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater 2014. [ Epub ahead of print]
  • Holladay C, Keeney M, Greiser U, et al. A matrix reservoir for improved control of non-viral gene delivery. J Control Release 2009;136(3):220-5
  • Scherer F, Schillinger U, Putz U, et al. Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J Gene Med 2002;4(6):634-43
  • Chen M, O’Toole EA, Muellenhoff M, et al. Development and characterization of a recombinant truncated type VII collagen "minigene". Implication for gene therapy of dystrophic epidermolysis bullosa. J Biol Chem 2000;275(32):24429-35
  • Andrade CF, Wong AP, Waddell TK, et al. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol 2007;292(2):L510-18
  • Hoganson DM, Pryor HI, Vacanti JP. Tissue engineering and organ structure: a vascularized approach to liver and lung. Pediatr Res 2008;63(5):520-6
  • Tsuchiya T, Balestrini JL, Mendez J, et al. Influence of pH on extracellular matrix preservation during lung decellularization. Tissue Eng Part C Methods 2014;12):1028-36
  • Suki B. Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung. J Cell Physiol 2014;229(9):1134-40
  • Melo E, Cardenes N, Garreta E, et al. Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs. J Mech Behav Biomed Mater 2014;37:186-95
  • Calle EA, Ghaedi M, Sundaram S, et al. Strategies for whole lung tissue engineering. IEEE Trans Biomed Eng 2014;61(5):1482-96
  • O’Neill JD, Anfang R, Anandappa A, et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 2013;96(3):1046-55
  • Yeen WC, Faber C, Caldeira C, et al. Reconstruction of pulmonary venous conduit with CorMatrix in lung transplant. Asian Cardiovasc Thorac Ann 2013;21(3):360-2
  • Mendez JJ, Ghaedi M, Steinbacher D, et al. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng Part A 2014;20(11-12):1735-46
  • Bonvillain RW, Scarritt ME, Pashos NC, et al. Nonhuman primate lung decellularization and recellularization using a specialized large-organ bioreactor. J Vis Exp 2013(82):e50825
  • Wagner DE, Bonenfant NR, Parsons CS, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 2014;35(10):3281-97
  • Cortiella J, Nichols JE, Kojima K, et al. Tissue-engineered lung: anin vivoandin vitrocomparison of polyglycolic acid and pluronic F-127hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Enginnering 2006;12(5):1213-25
  • Nichols JE, Cortiella J. Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc 2008;5(6):723-30
  • Andrade CF, Wong AP, Waddell TK, et al. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol 2007;292(2):L510-18
  • Mondrinos MJ, Koutzaki S, Jiwanmall E, et al. Engineering three-dimensional pulmonary tissue constructs. Tissue Eng 2006;12(4):717-28
  • Mondrinos MJ, Koutzaki S, Lelkes PI, et al. A tissue-engineered model of fetal distal lung tissue. 2007;293(3):L639-50
  • Zhang WJ, Lin QX, Zhang Y, et al. The reconstruction of lung alveolus-like structure in collagen-matrigel/microcapsules scaffolds in vitro. J Cell Mol Med 2011;15(9):1878-86
  • Chen P, Marsilio E, Goldstein RH, et al. Formation of lung alveolar-like structures in collagen-glycosaminoglycan scaffolds in vitro. Tissue Eng 2005;11(9-10):1436-48
  • Chen PP. Lung tissue engineering: In vitro synthesis of lung tissue from neonatal and fetal rat lung cells cultured in a three-dimensional collagen matrix. Massachusette Institute of Technology; Harvard: 2004
  • Dunphy SE, Bratt JA, Akram KM, et al. Hydrogels for lung tissue engineering: biomechanical properties of thin collagen-elastin constructs. J Mech Behav Biomed Mater 2014;38:251-9
  • Imsombut T, Srisuwan Y, Srihanam P, et al. Genipin-cross-linked silk fibroin microspheres prepared by the simple water-in-oil emulsion solvent diffusion method. Powder Technol 2010;203(3):603-8
  • Li C, Vepari C, Jin H-J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006;27(16):3115-24
  • Sow WT, Lui YS, Ng KW. Electrospun human keratin matrices as templates for tissue regeneration. Nanomedicine (Lond) 2013;8(4):531-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.