435
Views
35
CrossRef citations to date
0
Altmetric
Review

Facile electrospinning of an efficient drug delivery system

, , &
Pages 741-753 | Received 12 Oct 2015, Accepted 03 Jan 2016, Published online: 25 Feb 2016

References

  • Morton WJ US Patent 705691. 1902.
  • Baumgarten PK. Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci. 1971;36:71–79. doi:10.1016/0021-9797(71)90241-4.
  • Huang Z, Zhang Y-Z, Kotakic M, et al. A review on polymer nanofibers by elctrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–2253. doi:10.1016/S0266-3538(03)00178-7.
  • Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost. 1995;35:151–160. doi:10.1016/0304-3886(95)00041-8.
  • Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17:R89–R106. doi:10.1088/0957-4484/17/14/R01.
  • Sill TJ, Von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006. doi:10.1016/j.biomaterials.2008.01.011.
  • Rutledge GC, Fridrikh SV. Formation of fibers by electrospinning. Adv Drug Deliver Rev. 2007;59:1384–1391. doi:10.1016/j.addr.2007.04.020.
  • Caneba GT, Soong DS. Polymer membrane formation through the thermal-inversion process. 2. Mathematical modeling of membrane structure formation. Macromolecules. 1985;18:2545–2555. doi:10.1021/ma00154a032.
  • Kakade MV, Givens S, Gardner K, et al. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc. 2007;129:2777–2782. doi:10.1021/ja065043f.
  • Loh XJ, Peh P, Liao S, et al. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J Control Release. 2010;143:175–182. doi:10.1016/j.jconrel.2009.12.030.
  • Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–1170. doi:10.1002/(ISSN)1521-4095.
  • He X, Xiao Q, Lu CH, et al. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules. 2014;15:618–627. doi:10.1021/bm401656a.
  • Yang DY, Lu B, Zhao Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater. 2007;19:3702–3706. doi:10.1002/adma.200700171.
  • Megelski S, Stephens JS, Chase DB, et al. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002;35:8456–8466. doi:10.1021/ma020444a.
  • Casper CL, Stephens JS, Tassi NG, et al. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules. 2004;37:573–578. doi:10.1021/ma0351975.
  • Lu P, Xia YN. Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir. 2013;29:7070–7078. doi:10.1021/la400747y.
  • Jiang HL, Wang LQ, Zhu KJ. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. J Control Release. 2014;193:296–303. doi:10.1016/j.jconrel.2014.04.025.
  • Mickova A, Buzgo M, Benada O, et al. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules. 2012;13:952–962. doi:10.1021/bm2018118.
  • Moulton SE, Wallace GG. 3-dimensional (3D) fabricated polymer based drug delivery systems. J Control Release. 2014;193:27–34. doi:10.1016/j.jconrel.2014.07.005.
  • Jayasinghe SN, Scott I, Mcewan JR. Cell electrospinning highly concentrated cellular suspensions containing primary living organisms into cell-bearing threads and scaffolds. Nanomedicine. 2007;2(4):555–567. doi:10.2217/17435889.2.4.555.
  • Li W, Luo T, Yang YJ, et al. Formation of controllable hydrophilic/hydrophobic drug delivery systems by electrospinning of vesicles. Langmuir. 2015;31:5141–5146. doi:10.1021/la504796v.
  • Yang G, Wang J, Wang Y, et al. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano. 2015;9:1161–1174. doi:10.1021/nn507282f.
  • Hu S-H, Chen S-Y, Gao XH. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano. 2012;6(3):2558–2565. doi:10.1021/nn205023w.
  • Obero HS, Nukolova NV, Kabanov AV, et al. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliver Rev. 2013;65:1667–1685. doi:10.1016/j.addr.2013.09.014.
  • Fang Z, Wan LY, Chu LY, et al. ’Smart’ nanoparticles as drug delivery systems for applications in tumor therapy. Expert Opin Drug Deliv. 2015;12(12):1943–1953. doi:10.1517/17425247.2015.1071352.
  • Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2005;49:5603–5621. doi:10.1016/j.polymer.2008.09.014.
  • Chakraborty S, Liao I-C, Adler A, et al. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliver Rev. 2009;61:1043–1054. doi:10.1016/j.addr.2009.07.013.
  • Miao JJ, Pangule RC, Paskaleva EE, et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials. 2011;32:9557–9567. doi:10.1016/j.biomaterials.2011.08.080.
  • Yeo I-S, Oh J-E, Jeong L, et al. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules. 2008;9:1106–1116. doi:10.1021/bm700875a.
  • Zafar MS, Belton DJ, Hanby B, et al. Functional material features of Bombyx mori silk light versus heavy chain proteins. Biomacromolecules. 2015;16:606–614. doi:10.1021/acs.biomac.5b00553.
  • Ding FY, Deng HB, Du YM, et al. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale. 2014;6:9477–9493. doi:10.1039/C4NR02814G.
  • Sridhar R, Lakshminarayanan R, Madhaiyan K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev. 2015;44:790–814. doi:10.1039/C4CS00226A.
  • Kumar YS, Unnithan AR, Sen D, et al. Microgravity biosynthesized penicillin loaded electrospun polyurethane-dextran nanofibrous mats for biomedical applications. Colloids Surf A Physicochem Eng Aspects. 2015;477:77–83. doi:10.1016/j.colsurfa.2015.01.065.
  • Huang J, Deng HT, Song DD, et al. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates. Anal Chim Acta. 2015;878:102–108. doi:10.1016/j.aca.2015.03.053.
  • Wei JC, Hu J, Li M, et al. Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment. RSC Adv. 2014;4:28011–28019. doi:10.1039/c4ra03722g.
  • Xie JW, MacEwan MR, Schwartz AG, et al. Electrospun nanofibers for neural tissue engineering. Nanoscale. 2010;2:35–44. doi:10.1039/B9NR00243J.
  • Taylor G. Electrically driven jets. Proc R Soc Lond A. 1969;313:453–475. doi:10.1098/rspa.1969.0205.
  • Annis D, Bornat A, Edwards RO, et al. An elastomeric vascular prosthesis. Trans Am Soc Artif Intern Organs. 1978;24:209–214.
  • Xu XL, Chen XS, Xu XY, et al. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against glioma C6 cells. J Control Release. 2006;114:307–316. doi:10.1016/j.jconrel.2006.06.001.
  • Yamawaki-Ogata A, Hashizume R, Satake M, et al. A doxycycline loaded, controlled-release, biodegradable fiber for the treatment of aortic aneurysms. Biomaterials. 2010;31:9554–9564. doi:10.1016/j.biomaterials.2010.01.042.
  • Holan V, Chudickova M, Trosan P, et al. Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. J Control Release. 2011;156:406–412. doi:10.1016/j.jconrel.2011.07.022.
  • Xue JJ, He M, Niu YZ, et al. Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membrane. Int J Pharmaceutics. 2014;475:566–577. doi:10.1016/j.ijpharm.2014.09.026.
  • Hu CH, Liu S, Zhang Y, et al. Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions. Acta Biomater. 2013;9(7):7381–7388. doi:10.1016/j.actbio.2012.10.038.
  • Immich APS, Arias ML, Carreras N, et al. Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Mat Sci Eng C. 2013;33:4002–4008. doi:10.1016/j.msec.2013.05.034.
  • Yang Y, Xia T, Wei Z, et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials. 2011;32:4243–4254. doi:10.1016/j.biomaterials.2011.02.042.
  • Lee YJ, Lee J-H, Cho H-J, et al. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials. 2013;34:5059–5069. doi:10.1016/j.biomaterials.2013.03.051.
  • Luu YK, Kim K, Hsiao BS, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release. 2003;89:341–353. doi:10.1016/S0168-3659(03)00097-X.
  • Liang DH, Luu YK, Kim K, et al. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res. 2005;33(19):e170. doi:10.1093/nar/gni171.
  • Liao I-C, Chen SL, Liu JB, et al. Sustained viral gene delivery through core–shell fibers. J Control Release. 2009;139:48–55. doi:10.1016/j.jconrel.2009.06.007.
  • Park Y, Kang E, Kwon O-J, et al. Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy. J Control Release. 2010;148:75–82. doi:10.1016/j.jconrel.2010.06.027.
  • Sampson SL, Saraiva L, Gustafsson K, et al. Cell electrospinning: an in vitro and in vivo study. Small. 2014;10(1):78–82. doi:10.1002/smll.201302188.
  • Ehlera E, Jayasinghe SN. Cell electrospinning cardiac patches for tissue engineering the heart. Analyst. 2014;139:4449–4452. doi:10.1039/C4AN00766B.
  • Ranganath SH, Wang C-H. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials. 2008;29:2996–3003. doi:10.1016/j.biomaterials.2008.04.002.
  • Viana JFC, Carrijo J, Freitas CG, et al. Antifungal nanofibers made by controlled release of sea animal derived peptide. Nanoscale. 2015;7:6238–6246. doi:10.1039/C5NR00767D.
  • Wei JJ, Luo XM, Chen MH, et al. Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin. Acta Biomater. 2015;23:189–200. doi:10.1016/j.actbio.2015.05.020.
  • Buddhiranon S, DeFine LA, Alexander TS, et al. Genistein-modified poly(ethylene oxide)/poly(D,L-lactic acid) electrospun mats with improved antioxidant and anti-inflammatory properties. Biomacromolecules. 2013;14:1423–1433. doi:10.1021/bm400426f.
  • Kenawy E-R, Bowlin GL, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release. 2002;81:57–64. doi:10.1016/S0168-3659(02)00041-X.
  • Zhang L, Yan JW, Tang C, et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomedicine. 2014;9:3027–3036.
  • Guo G, Fu SZ, Zhou LX, et al. Preparation of curcumin loaded poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) nanofibers and their in vitro antitumor activity against glioma 9L cells. Nanoscale. 2011;3:3825–3832. doi:10.1039/c1nr10484e.
  • Li L, Zhou GL, Wang Y, et al. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials. 2015;37:218–229. doi:10.1016/j.biomaterials.2014.10.015.
  • Feng XH, Xiao LJ, Dai DD, et al. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials. 2013;34:7302–7313. doi:10.1016/j.biomaterials.2013.06.006.
  • Lai H-J, Kuan C-H, Wu H-C, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomaterialia. 2014;10:4156–4166. doi:10.1016/j.actbio.2014.05.001.
  • Zeng J, Aigner A, Czubayko F, et al. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules. 2005;6:1484–1488. doi:10.1021/bm0492576.
  • Viry L, Moulton SE, Romeo T, et al. Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. J Mater Chem. 2012;22:11347–11353. doi:10.1039/c2jm31069d.
  • Hong SH, Park SJ, Lee S, et al. Aerosol gene delivery using viral vectors and cationic carriers for in vivo lung cancer therapy. Expert Opin Drug Deliv. 2014;12:1–15.
  • Samprasit W, Akkaramongkolporn P, Ngawhirunpat T, et al. Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam. Int J Pharm. 2015;487:213–222. doi:10.1016/j.ijpharm.2015.04.044.
  • Jain A, Betancur M, Patel GD, et al. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat Mater. 2014;13:308–316. doi:10.1038/nmat3878.
  • Jin G, Prabhakaran MP, Kai D, et al. Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials. 2013;34:724–734. doi:10.1016/j.biomaterials.2012.10.026.
  • Parew SP, Chaudhari PN, Mohite KK, et al. Synthesis of ciprofloxacin-conjugated poly(L-lactic acid) polymer for nanofiber fabrication and antibacterial evaluation. Int J Nanomed. 2014;9:1463–1477.
  • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–198. doi:10.1016/j.addr.2007.08.041.
  • Yu DG, Wang X, Li XY, et al. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater. 2013;9:5665–5672. doi:10.1016/j.actbio.2012.10.038.
  • Jayakumar R, Prabaharan M, Nair SV, et al. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28:142–150. doi:10.1016/j.biotechadv.2009.11.001.
  • Min B-M, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25:1289–1297. doi:10.1016/j.biomaterials.2003.08.045.
  • Zhang YZ, Ouyang HW, Lim CT, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Inc J Biomed Mater Res Part B Appl Biomater. 2005;72B:156–165. doi:10.1002/jbm.b.30128.
  • Skotak M, Leonov AP, Larsen G, et al. Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of L-lactide onto chitosan. Biomacromolecules. 2008;9:1902–1908. doi:10.1021/bm800158c.
  • Ignatova MG, Manolova NE, Toshkova RA, et al. Electrospun nanofibrous mats containing quaternized chitosan and polylactide with in vitro antitumor activity against HeLa cells. Biomacromolecules. 2010;11:1633–1645. doi:10.1021/bm100285n.
  • Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27:1452–1461. doi:10.1016/j.biomaterials.2005.08.004.
  • Hartman O, Zhang C, Adams EL, et al. Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications. Biomacromolecules. 2009;10:2019–2032. doi:10.1021/bm8012764.
  • Gaharwar AK, Mihaila SM, Kulkarni AA, et al. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. J Control Release. 2014;187:66–73. doi:10.1016/j.jconrel.2014.04.035.
  • Cho SJ, Jung SM, Kang M, et al. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer. 2015;69:95–102. doi:10.1016/j.polymer.2015.05.037.
  • Lowe A, Bills J, Verma R, et al. Electrospun nitric oxide releasing bandage with enhanced wound healing. Acta Biomater. 2015;13:121–130. doi:10.1016/j.actbio.2014.11.032.
  • Wu HJ, Fan JT, Chu CC, et al. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci: Mater Med. 2010;21:3207–3215.
  • Yau WWY, Long HY, Gauthier NC, et al. The effects of nanofiber diameter and orientation on siRNA uptake and gene silencing. Biomaterials. 2015;37:94–106. doi:10.1016/j.biomaterials.2014.10.003.
  • Jia C, Yu D, Lamarre M, et al. Patterned electrospun nanofiber matrices via localized dissolutio: potential for guided tissue formation. Adv Mater. 2014;26:8192–8197. doi:10.1002/adma.201402404.
  • Ali MA, Mondal K, Singh C, et al. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale. 2015;7:7234–7245. doi:10.1039/C5NR00194C.
  • Zhao YL, Fan ZY, Shen MW, et al. Hyaluronic acid-functionalized electrospun polyvinyl alcohol/polyethyleneimine nanofibers for cancer cell capture applications. Adv Mater Interfaces. 2015;2(15):1500256. doi:10.1002/admi.201500256.
  • Hou S, Zhao LB, Shen QL, et al. Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew Chem Int Ed. 2013;52:3379–3383. doi:10.1002/anie.201208452.
  • Laurencin CT, Ashe KM, Nicole H, et al. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discov Today. 2014;19(6):795–800. doi:10.1016/j.drudis.2014.01.012.
  • Lo KWH, Tao J, Gagnon KA, et al. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol. 2014 Feb;22(2):74–81. doi:10.1016/j.tibtech.2013.12.002.
  • Cerqueira NMFSA, Gesto D, Oliveira EF, et al. Receptor-based virtual screening protocol for drug discovery. Arch Biochem Biophys. 2015;552:56–67. doi:10.1016/j.abb.2015.05.011.
  • Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci. 2014;14:772–792. doi:10.1002/mabi.201300561.
  • Wang YL, Guo G, Chen HF, et al. Preparation and characterization of polylactide/poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hybrid fibers for potential application in bone tissue engineering. Inter J Nanomedicine. 2014;9:1991–2003.
  • Wang YL, Deng JJ, Fan RR, et al. Novel nanoscale topography on poly(propylene carbonate)/poly(ε-caprolactone) electrospun nanofibers modifies osteogenic capacity of ADCs. RSC Adv. 2015;5:82834–82844. doi:10.1039/C4RA14244F.
  • Deng JJ, Wang YL, Zhou LX, et al. Fabrication and in vivo chondrification of a poly(propylene carbonate)/L-lactide-grafted tetracalcium phosphate electrospun scaffold for cartilage tissue engineering. RSC Adv. 2015;5:42943–42954. doi:10.1039/C4RA14244F.
  • Jassal M, Sengupta S, Bhowmick S. Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride. J Bio Sci. 2015;26(18):1425–1438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.