581
Views
13
CrossRef citations to date
0
Altmetric
Review

Recent updates in utilizing prodrugs in drug delivery (2013–2015)

&
Pages 571-591 | Received 20 Oct 2015, Accepted 24 Dec 2015, Published online: 06 Feb 2016

References

  • Dahan A, Khamis M, Agbaria R, et al. Targeted prodrugs in oral drug delivery. The modern molecular biopharmaceutical approach. Expert Opin Drug Deliv. 2012;9:1001–1013. doi:10.1517/17425247.2012.697055.
  • Karaman R, Fattash B, Qtait A. The future of prodrugs – design by quantum mechanics methods. Expert Opin Drug Deliv. 2013;10:713–729. doi:10.1517/17425247.2013.786699.
  • Karaman R. Prodrugs design based on inter- and intramolecular chemical processes. Chem Biol Drug Des. 2013;82:643–668. doi:10.1111/cbdd.2013.82.issue-6.
  • Huttunen KM, Raunio H, Rautio J. Prodrugs–from serendipity to rational design. Pharmacol Rev. 2011;63(3):750–771. doi:10.1124/pr.110.003459.
  • Stella VJ, Borchardt RT, Hageman MJ, et al. Prodrugs: challenges and rewards part 1 and 2. New York (NY): Springer; 2007.
  • Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7(3):255–270. doi:10.1038/nrd2468.
  • Fattash B, Karaman R. Chemical approaches used in prodrugs design. In: Karaman R, editor. Prodrugs design – a new era. Hauppauge (NY): Nova Science Publishers; 2014. p. 103–138.
  • Karaman R. Using predrugs to optimize drug candidates. Expert Opin Drug Discov. 2014;9(12):1405–1419. doi:10.1517/17460441.2014.954545.
  • Karaman R, editor. Prodrugs design based on inter- and intramolecular processes. In: Karaman R, editor. Prodrugs design – a new era. Hauppauge (NY): Nova Science Publishers; 2014. p. 1–76.
  • Han H-K, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci. 2000;2:48–58. doi:10.1208/ps020106.
  • Dahan A, Zimmermann EM, Ben-Shabat S. Modern prodrug design for targeted oral drug delivery. Molecules. 2014;19(10):16489–16505. doi:10.3390/molecules191016489.
  • Bader M, Thawabteh A, Karaman R. Targeted prodrugs. In: Karaman R, editor. Prodrugs design – a new era. Hauppauge (NY): Nova Science Publishers; 2014. p. 139–176.
  • Yuan Z, Yi X, Zhang J, et al. A prodrug nanoassembly entrapping drugs as a tumor-targeted delivery system. Chem Commun. 2013;49:801–803. doi:10.1039/c2cc37798e.
  • Kellermann M, Bauer W, Hirsch A, et al. The first account of a structurally persistent micelle. Angew Chem Int Ed Engl. 2004;43:2959–2962. doi:10.1002/anie.200353510.
  • Mackeyev Y, Raoof M, Cisneros B, et al. Toward paclitaxel–[60]fullerene immunoconjugates as a targeted prodrug against cancer. Nanosystems. 2014;1:67–75.
  • Ashcroft JM, Tsyboulski DA, Hartman KB, et al. Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun. 2006;3004–3006. doi:10.1039/b601717g.
  • Gannon CJ, Cherukuri P, Yakobson BI, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer. 2007;110:2654–2665. doi:10.1002/cncr.23155.
  • Zhong Y-J, Shao L-H, Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int J Oncol. 2013;42:373–383. doi:10.3892/ijo.2012.1754.
  • Podgorski I, Sloane BF. Cathepsin B and its role(s) in cancer progression. Biochem Soc Symp. 2003;70:263–276. doi:10.1042/bss0700263.
  • Carl PL, Chakravarty PK, Katzenellenbogen JA. A novel connector linkage applicable in prodrug design. J Med Chem. 1981;24:479–480.
  • Gou P, Liu W, Mao W, et al. Self-assembling doxorubicin prodrug forming nanoparticles for cancer chemotherapy: synthesis and anticancer study in vitro and in vivo. J Mater Chem B. 2013;1:284–292. doi:10.1039/C2TB00004K.
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701. doi:10.1038/nrc1958.
  • Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res. 1999;5:83–94.
  • Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013;65:1215–1233. doi:10.1016/j.addr.2013.05.001.
  • Wang Y, Wang H, Chen Y, et al. Biomimetic pseudopolyrotaxane prodrug micelles with high drug content for intracellular drug delivery. Chem Commun. 2013;49:7123–7125. doi:10.1039/c3cc43687j.
  • Yamamoto Y, Hyodo I, Koga Y, et al. Enhanced antitumor effect of anti-tissue factor antibody-conjugated epirubicin-incorporating micelles in xenograft models. Cancer Sci. 2015;106:627–634. doi:10.1111/cas.12645.
  • Maiti S, Park N, Han JH, et al. Gemcitabine-coumarin-biotin conjugates: a target specific theranostic anticancer prodrug. J Am Chem Soc. 2013;135:4567–4572. doi:10.1021/ja401350x.
  • Wexselblatt E, Gibson D. What do we know about the reduction of Pt(IV) pro-drugs? J Inorg Biochem. 2012;117:220–229. doi:10.1016/j.jinorgbio.2012.06.013.
  • Zheng Y-R, Suntharalingam K, Johnstone TC, et al. Pt(IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J Am Chem Soc. 2014;136:8790–8798. doi:10.1021/ja5038269.
  • Zheng Y-R, Suntharalingam K, Johnstone TC, et al. Encapsulation of Pt(iv) prodrugs within a Pt(ii) cage for drug delivery. Chem Sci. 2015;6:1189–1193. doi:10.1039/C4SC01892C.
  • Li X, Mu J, Liu F, et al. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging. Bioconjug Chem. 2015;26:955–961. doi:10.1021/acs.bioconjchem.5b00170.
  • Miura Y, Takenaka T, Toh K, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano. 2013;7:8583–8592. doi:10.1021/nn402662d.
  • Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–823. doi:10.1038/nnano.2011.166.
  • Cabral H, Nishiyama N, Okazaki S, et al. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J Control Release. 2005;101:223–232. doi:10.1016/j.jconrel.2004.08.022.
  • Cabral H, Nishiyama N, Kataoka K. Optimization of (1,2-diaminocyclohexane)platinum(ii)-loaded polymeric micelles directed to improved tumour targeting and enhanced antitumour activity. J Control Release. 2007;121:146–155. doi:10.1016/j.jconrel.2007.05.024.
  • Ahn J, Miura Y, Yamada N, et al. Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials. 2015;39:23–30. doi:10.1016/j.biomaterials.2014.10.069.
  • Gao Z, Lukyanov AN, Chakilam AR, et al. PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target. 2003;11:87–92. doi:10.1080/1061186031000138623.
  • Torchilin VP, Lukyanov AN, Gao Z, et al. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A. 2003;100:6039–6044. doi:10.1073/pnas.0931428100.
  • Li W, Zhao H, Qian W, et al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials. 2012;33:5349–5362. doi:10.1016/j.biomaterials.2012.04.016.
  • Wang H, Xie H, Wang J, et al. Self-assembling prodrugs by precise programming of molecular structures that contribute distinct stability, pharmacokinetics, and antitumor efficacy. Adv Funct Mater. 2015;25:4956–4965. doi:10.1002/adfm.v25.31.
  • Wang H, Xie H, Wu J, et al. Structure-based rational design of prodrugs to enable their combination with polymeric nanoparticle delivery platforms for enhanced antitumor efficacy. Angew Chem Int Ed Engl. 2014;53:11532–11537. doi:10.1002/anie.201406685.
  • Zhong Y, Meng F, Deng C, et al. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules. 2014;15:1955–1969. doi:10.1021/bm5003009.
  • Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep. 2013;65:1–14.
  • Denny WA. Tumor-activated prodrugs–a new approach to cancer therapy. Cancer Invest. 2004;22:604–619.
  • Zhang J, Kale V, Chen M. Gene-directed enzyme prodrug therapy. Aaps J. 2015;17:102–110. doi:10.1208/s12248-014-9675-7.
  • Both GW. Recent progress in gene-directed enzyme prodrug therapy: an emerging cancer treatment. Curr Opin Mol Ther. 2009;11:421–432.
  • Lo H-W, Day C-P, Hung M-C. Cancer-specific gene therapy. Adv Genet. 2005;54:235–255. doi:10.1016/S0065-2660(05)54010-0.
  • Saukkonen K, Hemminki A. Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther. 2004;4:683–696. doi:10.1517/14712598.4.5.683.
  • Maitland NJ, Stanbridge LJ, Dussupt V. Targeting gene therapy for prostate cancer. Curr Pharm Des. 2004;10:531–555.
  • Greco O, Dachs GU. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol. 2001;187:22–36. doi:10.1002/1097-4652(2001)9999:9999<::AID-JCP1060>3.0.CO;2-H.
  • Staquicini FI, Ozawa MG, Moya CA, et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest. 2011;121:161–173. doi:10.1172/JCI44798.
  • Bondanza A, Hambach L, Aghai Z, et al. IL-7 receptor expression identifies suicide gene-modified allospecific CD8+ T cells capable of self-renewal and differentiation into antileukemia effectors. Blood. 2011;117:6469–6478. doi:10.1182/blood-2010-11-320366.
  • Tang W, He Y, Zhou S, et al. A novel Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer. J Exp Clin Cancer Res. 2009;28:155. doi:10.1186/1756-9966-28-121.
  • Kakinoki K, Nakamoto Y, Kagaya T, et al. Prevention of intrahepatic metastasis of liver cancer by suicide gene therapy and chemokine ligand 2/monocyte chemoattractant protein-1 delivery in mice. J Gene Med. 2010;12:1002–1013. doi:10.1002/jgm.1528.
  • Chen L-S, Wang M, Ou W-C, et al. Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model. Gene Ther. 2010;17:1033–1041. doi:10.1038/gt.2010.50.
  • Ambade AV, Joshi GV, Mulherkar R. Effect of suicide gene therapy in combination with immunotherapy on antitumour immune response & tumour regression in a xenograft mouse model for head & neck squamous cell carcinoma. Indian J Med Res. 2010;132:415–422.
  • Greish K, Frandsen J, Scharff S, et al. Silk-elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. J Gene Med. 2010;12:572–579. doi:10.1002/jgm.1469.
  • Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11:2389–2401. doi:10.1089/104303400750038499.
  • Xu F, Li S, Li X-L, et al. Phase I and biodistribution study of recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene and ganciclovir administration in patients with head and neck cancer and other malignant tumors. Cancer Gene Ther. 2009;16:723–730. doi:10.1038/cgt.2009.19.
  • Freytag SO, Movsas B, Aref I, et al. Phase I trial of replication-competent adenovirus-mediated suicide gene therapy combined with IMRT for prostate cancer. Mol Ther. 2007;15:1016–1023. doi:10.1038/mt.sj.6300120.
  • Tong XW, Engehausen DG, Kaufman RH, et al. Improvement of gene therapy for ovarian cancer by using acyclovir instead of ganciclovir in adenovirus mediated thymidine kinase gene therapy. Anticancer Res. 1998;18:713–718.
  • Sangro B, Mazzolini G, Ruiz M, et al. A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma. Cancer Gene Ther. 2010;17:837–843. doi:10.1038/cgt.2010.40.
  • Wilson WR, Stribbling SM, Pruijn FB, et al. Nitro-chloromethylbenzindolines: hypoxia-activated prodrugs of potent adenine N3 DNA minor groove alkylators. Mol Cancer Ther. 2009;8:2903–2913. doi:10.1158/1535-7163.MCT-09-0571.
  • Green LK, Syddall SP, Carlin KM, et al. Pseudomonas aeruginosa NfsB and nitro-CBI-DEI–a promising enzyme/prodrug combination for gene directed enzyme prodrug therapy. Mol Cancer. 2013;12:58–63. doi:10.1186/1476-4598-12-58.
  • Ma X, Huang X, Moore Z, et al. Esterase-activatable beta-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. J Control Release. 2015;200:201–211. doi:10.1016/j.jconrel.2014.12.027.
  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30. doi:10.3322/caac.21166.
  • Ross D, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 2004;382:115–144. doi:10.1016/S0076-6879(04)82008-1.
  • Belinsky M, Jaiswal AK. NAD(P)H:quinone oxidoreductase1 (DT-diaphorase) expression in normal and tumor tissues. Cancer Metastasis Rev. 1993;12:103–117.
  • Bey EA, Reinicke KE, Srougi MC, et al. Catalase abrogates beta-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers. Mol Cancer Ther. 2013;12:2110–2120. doi:10.1158/1535-7163.MCT-12-0962.
  • Blanco E, Bey EA, Khemtong C, et al. Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res. 2010;70:3896–3904. doi:10.1158/0008-5472.CAN-09-3995.
  • Ma X, Huang X, Huang G, et al. Prodrug strategy to achieve lyophilizable, high drug loading micelle formulations through diester derivatives of β-Lapachone. Adv Healthc Mater. 2014;3:1210–1216. doi:10.1002/adhm.201300590.
  • Xu X, Xie K, Zhang X-Q, et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc Natl Acad Sci U S A. 2013;110:18638–18643. doi:10.1073/pnas.1303958110.
  • Woodcock J, Griffin JP, Behrman RE. Development of novel combination therapies. N Engl J Med. 2011;364:985–987. doi:10.1056/NEJMp1101548.
  • Zhao Y, Biertumpfel C, Gregory MT, et al. Structural basis of human DNA polymerase eta-mediated chemoresistance to cisplatin. Proc Natl Acad Sci U S A. 2012;109:7269–7274. doi:10.1073/pnas.1202681109.
  • Xie K, Doles J, Hemann MT, et al. Error-prone translesion synthesis mediates acquired chemoresistance. Proc Natl Acad Sci U S A. 2010;107:20792–20797. doi:10.1073/pnas.1011412107.
  • Xiong X-B, Lavasanifar A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano. 2011;5:5202–5213. doi:10.1021/nn2013707.
  • Perche F, Biswas S, Wang T, et al. Hypoxia-targeted siRNA delivery. Angew Chem Int Ed Engl. 2014;53:3362–3366. doi:10.1002/anie.201308368.
  • Kiyose K, Hanaoka K, Oushiki D, et al. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc. 2010;132:15846–15848. doi:10.1021/ja105937q.
  • Navarro G, Sawant RR, Biswas S, et al. P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine (Lond). 2012;7:65–78. doi:10.2217/nnm.11.93.
  • Oe Y, Christie RJ, Naito M, et al. Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors. Biomaterials. 2014;35:7887–7895. doi:10.1016/j.biomaterials.2014.05.041.
  • Christie RJ, Matsumoto Y, Miyata K, et al. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano. 2012;6:5174–5189. doi:10.1021/nn300942b.
  • Kim HJ, Ishii T, Zheng M, et al. Multifunctional polyion complex micelle featuring enhanced stability, targetability, and endosome escapability for systemic siRNA delivery to subcutaneous model of lung cancer. Drug Deliv Transl Res. 2014;4:50–60. doi:10.1007/s13346-013-0175-6.
  • Miyata K, Nishiyama N, Kataoka K. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev. 2012;41:2562–2574. doi:10.1039/c1cs15258k.
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–178. doi:10.1038/nature03121.
  • Xiong J-P, Stehle T, Zhang R, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–155. doi:10.1126/science.1069040.
  • Pittella F, Cabral H, Maeda Y, et al. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J Control Release. 2014;178:18–24. doi:10.1016/j.jconrel.2014.01.008.
  • Kim HJ, Miyata K, Nomoto T, et al. siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Biomaterials. 2014;35:4548–4556. doi:10.1016/j.biomaterials.2014.02.016.
  • Karaman R, Dajani KK, Qtait A, et al. Prodrugs of acyclovir - a computational approach. Chem Biol Drug Des. 2012;79:819–834. doi:10.1111/j.1747-0285.2012.01335.x.
  • Karaman R, Al-Kurd S, Yaghmour R, et al. Antibacterial activity of novel prodrugs of amoxicillin and cephalexin. World J Pharm Res. 2015;4(9):334–360.
  • Dong Z, Li Q, Guo D, et al. Synthesis and evaluation of bile acid-ribavirin conjugates as prodrugs to target the liver. J Pharm Sci. 2015;104:2864–2876. doi:10.1002/jps.24375.
  • Shiffman ML. What future for ribavirin? Liver Int. 2009;29:68–73. doi:10.1111/j.1478-3231.2008.01936.x.
  • De Franceschi L, Fattovich G, Turrini F, et al. Hemolytic anemia induced by ribavirin therapy in patients with chronic hepatitis C virus infection: role of membrane oxidative damage. Hepatology. 2000;31:997–1004. doi:10.1053/he.2000.5789.
  • Endres CJ, Moss AM, Govindarajan R, et al. The role of nucleoside transporters in the erythrocyte disposition and oral absorption of ribavirin in the wild-type and equilibrative nucleoside transporter 1-/- mice. J Pharmacol Exp Ther. 2009;331:287–296. doi:10.1124/jpet.109.153130.
  • Ruiz-Sanchis P, Wohl BM, Smith AAA, et al. Highly active macromolecular prodrugs inhibit expression of the hepatitis C virus genome in the host cells. Adv Healthc Mater. 2015;4:65–68. doi:10.1002/adhm.201400307.
  • Reeves BD, Young M, Grieco PA, et al. Aggregatibacter actinomycetemcomitans biofilm killing by a targeted ciprofloxacin prodrug. Biofouling. 2013;29:1005–1014. doi:10.1080/08927014.2013.823541.
  • Sun K. Improved targeting and biopharmaceutical properties of prodrugs of anti-infective agents [doctoral dissertation]. Ann Arbor (MI): University of Michigan; 2013.
  • Weggen S, Rogers M, Eriksen J. NSAIDs: small molecules for prevention of Alzheimer’s disease or precursors for future drug development? Trends Pharmacol Sci. 2007;28:536–543. doi:10.1016/j.tips.2007.09.004.
  • Zhao Y, Qu B, Wu X, et al. Design, synthesis and biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen with “lock-in” function. Eur J Med Chem. 2014;82:314–323. doi:10.1016/j.ejmech.2014.05.072.
  • Guise CP, Mowday AM, Ashoorzadeh A, et al. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin J Cancer. 2014;33:80–86. doi:10.5732/cjc.012.10285.
  • Foehrenbacher A, Secomb TW, Wilson WR, et al. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling. Front Oncol. 2013;3:314. doi:10.3389/fonc.2013.00314.
  • Singh Y, Palombo M, Sinko PJ. Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem. 2008;15:1802–1826.
  • Patterson AV, Saunders MP, Chinje EC, et al. Enzymology of tirapazamine metabolism: a review. Anticancer Drug Des. 1998;13:541–573.
  • Hicks KO, Siim BG, Jaiswal JK, et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin Cancer Res. 2010;16:4946–4957. doi:10.1158/1078-0432.CCR-10-1439.
  • Karnthaler-Benbakka C, Groza D, Kryeziu K, et al. Tumor-targeting of EGFR inhibitors by hypoxia-mediated activation. Angew Chem Int Ed Engl. 2014;53:12930–12935. doi:10.1002/anie.201403936.
  • Heffern MC, Yamamoto N, Holbrook RJ, et al. Cobalt derivatives as promising therapeutic agents. Curr Opin Chem Biol. 2013;17:189–196. doi:10.1016/j.cbpa.2012.11.019.
  • Cazares-Korner C, Pires IM, Swallow ID, et al. CH-01 is a hypoxia-activated prodrug that sensitizes cells to hypoxia/reoxygenation through inhibition of Chk1 and Aurora A. ACS Chem Biol. 2013;8:1451–1459. doi:10.1021/cb4001537.
  • Sorensen CS, Syljuasen RG. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res. 2012;40:477–486. doi:10.1093/nar/gkr697.
  • Lindquist KE, Cran JD, Kordic K, et al. Selective radiosensitization of hypoxic cells using BCCA621C: a novel hypoxia activated prodrug targeting DNA-dependent protein kinase. Tumor Microenviron Ther. 2013;1:46–55. doi:10.2478/tumor-2013-0003.
  • Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J. 2009;417:639–650. doi:10.1042/BJ20080413.
  • Bouquet F, Ousset M, Biard D, et al. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. J Cell Sci. 2011;124:1943–1951. doi:10.1242/jcs.078030.
  • Kumareswaran R, Ludkovski O, Meng A, et al. Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. J Cell Sci. 2012;125:189–199. doi:10.1242/jcs.092262.
  • Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287:C817–C833. doi:10.1152/ajpcell.00139.2004.
  • Anders MW, James LR, Shey-Shing S Mitochondria-targeted antioxidant prodrugs and methods of use. U.S. Patent Application 12/094,618, filed. 2006 Nov 20.
  • Pelkonen O, Maenpaa J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998;28:1203–1253. doi:10.1080/004982598238886.
  • Huttunen KM, Mahonen N, Leppanen J, et al. Novel cyclic phosphate prodrug approach for cytochrome P450-activated drugs containing an alcohol functionality. Pharm Res. 2007;24:679–687. doi:10.1007/s11095-006-9187-y.
  • Huttunen KM, Tani N, Juvonen RO, et al. Design, synthesis, and evaluation of novel cyclic phosphates of 5-aminosalicylic acid as cytochrome p450-activated prodrugs. Mol Pharm. 2013;10:532–537. doi:10.1021/mp300330v.
  • Karaman R. Prodrugs of aza nucleosides based on proton transfer reactions. J Comput Aided Mol Des. 2010;24:961–970. doi:10.1007/s10822-010-9389-6.
  • Karaman R, Fattash B, Mecca G, et al. Computationally designed atovaquone prodrugs based on Bruice’s enzyme model. Curr Comput Aided Drug Des. 2014;10:15–27.
  • Karaman R, Hallak H. Anti-malarial pro-drugs- a computational aided design. Chem Biol Drug Des. 2010;76:350–360. doi:10.1111/j.1747-0285.2010.01018.x.
  • Karaman R. Computational aided design for dopamine prodrugs based on novel chemical approach. Chem Biol Drug Des. 2011;78:853–863. doi:10.1111/j.1747-0285.2011.01208.x.
  • Karaman R, Dajani KK, Hallak H. Computer-assisted design for atenolol prodrugs for the use in aqueous formulations. J Mol Model. 2012;18:1523–1540. doi:10.1007/s00894-011-1180-7.
  • Karaman R, Qtait A, Dajani KK, et al. Design and synthesis of an aqueous stable atenolol prodrug. ScientificWorldJournal. 2014;2014(2014):Article ID 248651, 13 p. doi:10.1155/2014/248651.
  • Karaman R, Amly W, Scrano L, et al. Computationally designed prodrugs of statins based on Kirby’s enzyme model. J Mol Model. 2013;19:3969–3982. doi:10.1007/s00894-013-1929-2.
  • Hejaz H, Karaman R, Khamis M. Computer-assisted design for paracetamol masking bitter taste prodrugs. J Mol Model. 2012;18:103–114. doi:10.1007/s00894-011-1040-5.
  • Karaman R, Karaman D, Zeiadeh I. Computationally designed phenylephrine prodrugs- a model for enhancing bioavailability. J Mol Phys. 2013;111:3249–3264. doi:10.1080/00268976.2013.779395.
  • Karaman R, Ghareeb H, Dajani KK, et al. Design, synthesis and in-vitro kinetic study of tranexamic acid prodrugs for the treatment of bleeding conditions. J Mol Aided Comput Des. 2013;27:615–635. doi:10.1007/s10822-013-9666-2.
  • Karaman R, Dokmak G, Hamarsheh O, et al. Design, synthesis, characterization and in-vitro kinetic study of novel antibacterials prodrugs. World J Pharm Res. 2015;4:2817–2845.
  • Karaman R. Prodrugs for masking bitter taste of antibacterial drugs- a computational approach. J Mol Model. 2013;19:2399–2412. doi:10.1007/s00894-013-1780-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.