972
Views
273
CrossRef citations to date
0
Altmetric
Review

Multi-functional polymeric nanoparticles for tumour-targeted drug delivery

&
Pages 205-216 | Published online: 28 Feb 2006

Bibliography

  • FONSECA C, SIMOES S, GASPAR R: Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release (2002) 83(2):273-286.
  • CHAWLA JS, AMIJI MM: Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. (2002) 249(1-2):127-138.
  • POTINENI A, LYNN DM, LANGER R, AMIJI MM: Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control. Release (2003) 86(2-3):223-234.
  • UHRICH KE, CANNIZZARO SM, LANGER RS, SHAKESHEFF KM: Polymeric systems for controlled drug release. Chem. Rev. (1999) 99:3181-3198.
  • MAEDA H, WU J, SAWA T, MATSUMURA Y, HORI K: Tumor vascular permeability and the EPR effect on macromolecular therapeutics: a review. J. Control. Release (2000) 65:271-284.
  • KAUL G, AMIJI M: Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm. Res. (2002) 19(7):1061-1067.
  • BRANNON-PEPPAS L, BLANCHETTE JO: Nanoparticle and targeted systems for cancer therapy. Adv. Drug Del. Rev. (2004) 56:1649-1659.
  • BRIGGER I, DUBERNET C, COUVREUR P: Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. (2002) 54:631-651.
  • REDDY JA, ALLAGADDA VM, LEAMON CP: Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr. Pharm. Biotechnol. (2005) 6(2):131-150.
  • CASCANTE M, CENTELLES JJ, VEECH RL, LEE WN, BOROS LG: Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation. Nutr. Cancer. (2000) 36(2):150-154.
  • PARK JW, BENZ CC, MARTIN FJ: Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol. (2004) 31(6 Suppl. 13):196-205.
  • REDDY JA, LOW PS: Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit. Rev. Ther. Drug Carrier Syst. (1998) 15(6):587-627.
  • STELLA B, ARPICCO S, PERACCHIA MT et al.: Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. (2000) 89(11):1452-1464.
  • HILGENBRINK AR, LOW PS: Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J. Pharm. Sci. (2005) 94(10):2135-2146.
  • WARTLICK H, MICHAELIS K, BALTHASAR S, STREBHARDT K, KREUTER J, LANGER K: Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumor cells. J. Drug Target. (2004) 12(7):461-471.
  • BIANCO AR: Targeting c-erbB2 and other receptors of the c-erbB family: rationale and clinical applications. J. Chemother. (2004) 16(Suppl. 4):52-54.
  • ZHANG Y, ZHANG J: Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J. Coll. Inter. Sci. (2005) 283:352-357.
  • EL-SAYED IH, HUANG X, EL-SAYED MA: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. (2005) 5(5):829-834.
  • LOO C, LOWERY A, HALAS N, WEST J, DREZEK R: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. (2005) 5(4):709-711.
  • FAYETTE J, SORIA J-C, ARMAND J-P: Use of angiogenesis inhibitors in tumor treatment. Eur. J. Cancer (2005) 41:1109-1116.
  • EMANUEL S, GRUNINGER RH, FUENTES-PESQUERA A et al.: A vascular endothelial growth factor receptor-2 kinase inhibitor potentiates the activity of the conventional chemotherapeutic agents paclitaxel and doxorubicin in tumor xenograft models. Mol. Pharmacol. (2004) 66(3):635-647.
  • MA L, FRANCIA G, VILORIA-PETIT A et al.: In vitro procoagulant activity induced in endothelial cells by chemotherapy and antiangiogenic drug combinations, modulation by lower-dose chemotherapy. Cancer Res. (2005) 65(12):5365-5373.
  • TUETTENBERG J, GROBHOLZ R, KORN T, WENZ F, ERBER R, VAJKOCZY P: Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J. Cancer Res. Clin. Oncol. (2005) 131(1):31-40.
  • KABBINAVAR FF, HAMBLETON J, MASS RD, HURWITZ HI, BERGSLAND E, SARKAR S: Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J. Clin. Oncol. (2005) 23(16):3706-3712.
  • MCCARTHY S: Antiangiogenesis drug promising for metastatic colorectal cancer – new treatments for colorectal cancer might improve patients’ survival, investigators reported at ASCO. Lancet (2003) 361:1959.
  • TRAN J, MASTER Z, YU JL, RAK J, DUMONT DJ, KERBEL RS: A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc. Natl. Acad. Sci. USA (2002) 99:4349-4354.
  • SENGUPTA S, EAVARONE D, CAPILA I et al.: Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature (2005) 436:568-572.
  • MANSOURI A, HENLE KJ, NAGLE WA, MOSS AJ: Tumor cell drug resistance and its reversal. SAAS Bull. Biochem. Biotechnol. (1990) 3:91-96.
  • BRADLEY G, JURANKA PF, LING V: Mechanisms of multidrug resistance. Biochem. Biophyis. Acta. (1988) 948:87-128.
  • HARRIS AL, HOCHHAUSER D: Mechanisms of multidrug resistance in cancer treatment. Acta Oncol. (1992) 31(2):205-213.
  • MORROW CS, COWAN KH: Glutathione S-transferases and drug resistance. Cancer Cells (1990) 2(1):15-22.
  • REED JC: Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr. Opin. Oncol. (1995) 7(6):541-546.
  • MUELLER H, EPPENBERGER U: The dual role of mutant p53 protein in chemosensitivity of human cancers. Anticancer Res. (1996) 16(6B):3845-3848.
  • GOTTESMAN MM, FOJO T, BATES SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Revs. Cancer (2002) 2:48-58.
  • THOMAS H, COLEY HM: Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control. (2003) 10(2):159-165.
  • KELLEN JA: The reversal of multidrug resistance: an update. J. Exp. Ther. Oncol. (2003) 3:5-13.
  • FERRY DR, TRAUNECKER H, KERR DJ: Clinical trials of P-glycoprotein reversal in solid tumors. Eur. J. Cancer (1996) 32A:1070-1081.
  • VAUTHIER C, DUBERNET C, CHAUVIERRE C, BRIGGER I, COUVREUR P: Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release (2003) 93(2):151-160.
  • SOMA CE, DUBERNET C, BENTOLILA D, BENITA S, COUVREUR P: Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials (2000) 21:1-7.
  • GUPTA AK, GUPTA M: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials (2005) 26:3995-4021.
  • HARISINGHANI MG, BARENTSZ J, HAHN PF et al.: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. (2003) 348(25):2491-2499.
  • ZHAO M, BEAUREGARD DA, LOIZOU L, DAVLETOV B, BRINDLE KM: Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. (2001) 7:1241-1244.
  • KOHLER N, SUN C, WANG J, ZHANG M: Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir (2005) 21:8858-8864.
  • CHATTERJEE J, HAIK Y, CHEN C-J: Size dependant magnetic properties of iron oxide nanoparticles. J. Magn. Magn. Mater. (2003) 257(1):113-118.
  • CHOULY C, POULIQUEN D, LUCET I, JEUNE P, PELLET JJ: Development of superparamagnetic nanoparticles for MRI: effect of particles size, charge and surface nature on biodistribution. J. Microencapsul. (1996) 13:245-255.
  • GOMEZ-LOPERA SA, PLAZA RC, DELGADO AV: Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid. Interf. Sci. (2001) 240(1):40-47.
  • STRABLE E, BULTE JW, MOSKOWITZ B, VIVEKANANDAN K, ALLEN M, DOUGLAS T: Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem. Mater. (2001) 13:2201-2209.
  • RAMIREZ LP, LANDFESTER K: Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys. (2003) 204:22-31.
  • JAIN TK, MORALES MA, SAHOO SK, LESLIE-PELECKY DL, LABHASETWAR V: Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. (2005) 2(3):194-205.
  • SHINKAI M, SUZUKI M, IIJIMA S, KOBAYASHI T: Antibody-conjugated magnetoliposomes for targeting cancer cells and their application in hyperthermia. Biotechnol. Appl. Biochem. (1995) 21(Pt 2):125-137.
  • BABINCOVA M, ALTANEROVA V, ALTANER C, CICMANEC P, BABINEC P: In vivo heating of magnetic nanoparticles in alternating magnetic field. Med. Phys. (2004) 31(8):2219-2221.
  • LUDERER AA, BORRELLI NF, PANZARINO JN et al.: Glass-ceramic-mediated, magnetic field-induced localized hyperthermia: response of a murine mammary carcinoma. Radiat. Res. (1983) 94:190-198.
  • MINAMIMURA T, SATO H, KASAOKA S et al.: Tumor regression by inductive hyperthermia combined with hepatic embolization using dexran magnetite-incorporated microspheres in rats. Int. J. Oncol. (2000) 16:1153-1158.
  • RAAPHORST G, YANG H, WILKINS D, NG CE: Cisplatin, hyperthermia and radiation treatment in human cisplatin-sensitive and resistant glioma cell lines. Int. J. Hyperthermia (1996) 12:801-812.
  • ITO A, MATSUOKA F, HONDA H, KOBAYASHI T: Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol. Immunother. (2004) 53:26-32.
  • ITO A, TANAKA K, KONDO K et al.: Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci. (2003) 94(3):308-313.
  • ITO A, SHINKAI M, HONDA H, KOBAYASHI T: Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. (2001) 8(9):649-654.
  • CHEN J, SAEKI F, WILEY BJ et al.: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. (2005) 5(3):473-477.
  • OLDENBERG SJ, JACKSON JB, WESTCOTT SL, HALAS NJ: Infrared extinction properties of gold nanoshells. Appl. Phys. Lett. (1999) 75:2897-2899.
  • LOO C, LIN A, HIRSCH L et al.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Tech. Cancer Res. Treat. (2003) 3(1):33-40.
  • WEISSLEDER R: A clearer vision for in vivo imaging. Nat. Biotechnol. (2001) 19:316-317.
  • LANDSMAN ML, KWANT G, MOOK GA, ZIJLSTRA WG: Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J. Appl. Physiol. (1976) 40:575-583.
  • HIRSCH LR, STAFFORD RJ, BANKSON JA et al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA (2003) 100(23):13549-13554.
  • PACIOTTI GF, MYER L, WEINREICH D et al.: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. (2004) 11(3):169-183.
  • MUKHERJEE P, BHATTACHARYA R, WANG P et al.: Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res. (2005) 11(9):3530-3534.
  • HAINFELD JF, SLATKIN DN, SMILOWITZ HM: The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. (2004) 49:N309-N315.
  • BARTH RF, SOLOWAY AH: Boron neutron capture therapy of primary and metastatic brain tumors. Mol. Chem. Neuropathol. (1994) 21:139-154.
  • TOKUMITSU H, HIRATSUKA J, SAKURAI Y, KOBAYASHI T, ICHIKAWA H, FUKUMORI Y: Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor. Cancer Lett. (2000) 150:177-182.
  • AIME S, BARGE A, CABELLA C, CRICH SG, GIANOLIO E: Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates. Curr. Pharm. Biotechnol. (2004) 5(6):509-518.
  • SHIKATA F, TOKUMITSU H, ICHIKAWA H, FUKUMORI Y: In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur. J. Pharm. Biopharm. (2002) 53(1):57-63.
  • MOREL S, TERRENO E, UGAZIO E, AIME S, GASCO M: NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium (III) complexes. Eur. J. Pharm. Biopharm. (1998) 45:157-163.
  • NSEREKO S, AMIJI M: Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials (2002) 23(13):2723-2731.
  • OYEWUMI MO, YOKEL RA, JAY M, COAKLEY T, MUMPER RJ: Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Release (2004) 95:613-626.
  • OYEWUMI MO, MUMPER RJ: Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy. Bioconjugate Chem. (2002) 13:1328-1335.
  • OYEWUMI MO, LIU S, MOSCOW JA, MUMPER RJ: Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters. Bioconjugate Chem. (2003) 14:404-411.
  • GAO X, YANG L, PETROS JA, MARSHALL FF, SIMONS JW, NIE S: In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. (2005) 16:63-72.
  • CHAN WC, MAXWELL DJ, GAO XH, BAILEY RE, HAN MY, NIE SM: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. (2002) 13:40-46.
  • VOURA EB, JAISWAL JK, MATOUSSI H, SIMON SM: Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. (2004) 10(9):993-998.
  • MURRAY CB, NORRIS DJ, BAWENDI MG: Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. (1993) 115:8706-8715.
  • MENDINTZ IL, UYEDA HT, GOLDMAN ER, MATTOUSSI H: Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. (2005) 4:435-446.
  • WU X, LIU H, LIU J et al.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. (2003) 21(1):41-46.
  • GAO X, CUI Y, LEVENSON RM, CHUNG LWK, NIE S: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. (2004) 22:969-976.
  • MENDINTZ IL, TRAMMELL SA, MATTOUSSI H, MAURO JM: Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. (2004) 126:30-31.
  • SUKHANOVA A, DEVY J, VENTEO L et al.: Biocompatable fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. (2004) 324:60-67.
  • BAKALOVA R, OHIBA H, ZHELEV Z, ISHIKAWA M, BABA Y: Quantum dots as photosensitizers? Nat. Biotechnol. (2004) 22(11):1360-1361.
  • LYNN DM, ANDERSON DG, PUTNAM D, LANGER R: Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. (2001) 123:8155-8156.
  • AKINC A, LYNN DM, ANDERSON DG, LANGER R: Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J. Am. Chem. Soc. (2003) 125:5316-5323.
  • SEYMOUR LW: Synthetic polymers with intrinsic anticancer activity. J. Bioact. Comp. Polymers (1991) 6:178-216.
  • DUNCAN R: The dawning era of polymer therapeutics. Nature Rev. (2003) 2:347-360.
  • ALTAN N, CHEN Y, SCHINDLER M, SIMON SM: Defective acidification in human breast tumor cells and implications for chemotherapy. J. Exp. Med. (1998) 187(10):1583-1598.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.