916
Views
93
CrossRef citations to date
0
Altmetric
Review

Advances and challenges of nanotechnology-based drug delivery systems

, BS, , MD, , MD, PhD & , PhD
Pages 621-633 | Published online: 31 Oct 2007

Bibliography

  • ZHU YP, WOERDENBAG HJ: Traditional Chinese herbal medicine. Pharm. World Sci. (1995) 17:103-112.
  • WEINER LM: An overview of monoclonal antibody therapy of cancer. Semin. Oncol. (1999) 26:41-50.
  • LANGER R: New methods of drug delivery. Science (1990) 249:1527-1533.
  • MOSES MA, BREM H, LANGER R: Advancing the field of drug delivery: taking aim at cancer. Cancer Cell (2003) 4:337-341.
  • KATAOKA K, HARADA A, NAGASAKI Y: Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. (2001) 47:113-131.
  • PANYAM J, LABHASETWAR V: Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. (2003) 55:329-349.
  • BATIST G, RAMAKRISHNAN G, RAO CS et al.: Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol. (2001) 19:1444-1454.
  • LOCKMAN PR, MUMPER RJ, KHAN MA et al.: Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm. (2002) 28:1-13.
  • YOON TJ, KIM JS, KIM BG et al.: Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew. Chem. Int. Ed. (2005) 44:1068-1071.
  • LAVAN DA, MCGUIRE T, LANGER R: Small-scale systems of in vivo drug delivery. Nat. Biotechnol. (2003) 21:1184-1191.
  • ALLEN TM, CULLIS PR: Drug delivery systems: entering the mainstream. Science (2004) 303:1818-1822.
  • GREF R, MINAMITAKE Y, PERACCHIA MT et al.: Biodegradable long-circulating polymeric nanospheres. Science (1994) 263:1600-1603.
  • FERRARI M: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer (2005) 5:161-171.
  • LANGER R: Drug delivery and targeting. Nature (1998) 392:5-10.
  • CHITHRANI DB, GHAZANI AA, CHAN WCW: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. (2006) 6:662-668.
  • GENG Y, DALHAIMER P, CAI S et al.: Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotech. (2007) 2:249-255.
  • GAO H, SHI W, FREUND LB: Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA (2005) 102:9469-9474.
  • MULDER WJ, KOOLE R, BRANDWIJK RJ et al.: Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett. (2006) 6:1-6.
  • ZAKHARIAN TY, SERYSHEV A, SITHARAMAN B et al.: A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. (2005) 127:12508-12509.
  • BIANCO A, KOSTARELOS K, PRATO M: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. (2005) 9:674-679.
  • GUPTA AK, GUPTA M: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials (2005) 26:3995-4021.
  • SAMIA ACS, DAYAL S, BURDA C: Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy. Photochem. Photobiol. (2006) 82:617-625.
  • MUCIC RC, STORHOFF JJ, MIRKIN CA et al.: DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. (1998) 120:12674-12675.
  • GREGORIADIS G: Carrier potential of liposomes in biology and medicine. N. Engl. J. Med. (1976) 295:765-770.
  • SAHOO SK, LABHASETWAR V: Nanotech approaches to drug delivery and imaging. Drug Discov. Today (2003) 8:1112-1120.
  • SZOKA F Jr, PAPAHADJOPOULOS D: Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. (1980) 9:467-508.
  • GREGORIADIS G: Engineering liposomes for drug delivery: progress and problems. Trend Biotech. (1995) 13:527-537.
  • ALLEN TM, HANSEN C, MARTIN F et al.: Liposomes containing synthetic lipid derivatives of poly(ethyleneglycol) show prolonged circulation half-lives in vivo. Biochimica et Biophysica Acta (1991) 1066:29-36.
  • LANZA GM, YU X, WINTER PM et al.: Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation (2002) 106:2842-2847.
  • LIAN T, HO RJY: Trends and developments in liposome drug delivery systems. J. Pharm. Sci. (2001) 90:667-680.
  • TOMALIA DA, BAKER H, DEWALD J et al.: A new class of polymers: starburst-dendritic macromolecules. Polym. J. (1985) 17:117-132.
  • LAVASANIFAR A, SAMUEL J, KWON GS: Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv. Drug Deliv. Rev. (2002) 54:169-190.
  • SHIVE MS, ANDERSON JM: Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. (1997) 28:5-24.
  • PANYAM J, ZHOU WZ, PRABHA S et al.: Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. (2002) 16:1217-1226.
  • PANYAM J, LABHASETWAR V: Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol. Pharm. (2004) 1:77-84.
  • MATSUMURA Y, MAEDA H: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. (1986) 46:6387-6392.
  • HAAG R: Supramolecular drug-delivery systems based on polymeric core–shell architectures. Angew. Chem. Int. Ed. (2004) 43:278-282.
  • KWON G, NAITO M, YOKOYAMA M et al.: Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control. Rel. (1997) 48:195-201.
  • LA SB, OKANO T, KATAOKA K: Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)–poly(b-benzyl L-aspartate) block copolymer micelles. Pharm. Sci. (1996) 85:85-90.
  • SAVIC R, LUO L, EISENBERG A et al.: Micellar nanocontainers distribute to defined cytoplasmic organelles. Science (2003) 300:615-618.
  • KROTO HW, HEATH JR, O'BRIEN SC, CURL RF, SMALLEY RE: C60: Buckminsterfullerene. Nature (1985) 318:162-163.
  • DUGAN LL, TURETSKY DM, DU C et al.: Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. USA (1997) 94:9434-9439.
  • FRIEDMAN SH, DECAMP DL, SIJBESMA RP et al.: Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc. (1993) 115:6506-6509.
  • YAMAGO S, TOKUYAMA H, NAKAMURA E et al.: In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem. Biol. (1995) 2:385-389.
  • ZAKHARIAN TY, SERYSHEV A, SITHARAMAN B et al.: A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. (2005) 127:12508-12509.
  • ASHCROFT JM, TSYBOULSKI DA, HARTMAN KB et al.: Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem. Comm. (2006):3004-3006.
  • LIU J, RINZLER AG, DAI H et al.: Fullerene pipes. Science (1998) 280:1253-1256.
  • DYKE CA, TOUR JM: Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem. Eur. J. (2004) 10:812-817.
  • SHI KNW, JESSOP TC, WENDER PA et al.: Nanotube molecular transporters: internalization of carbon nanotube–protein conjugates into mammalian cells. J. Am. Chem. Soc. (2004) 126:6850-6851.
  • LOPEZ CF, NIELSEN SO, MOORE PB et al.: Understanding nature's design for a nanosyringe. Proc. Natl. Acad. Sci. USA (2004) 101:4431-4434.
  • CAI D, MATARAZA JM, QIN ZH et al.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods (2005) 2:449-454.
  • PANTAROTTO D, PARTIDOS CD, HOEBEKE J et al.: Immunization with peptide-functionalized carbon nanotubes enhances virus specific neutralizing antibody responses. Chem. Biol. (2003) 10:961-966.
  • LIU Y, WU DC, ZHANG WD et al.: Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed. (2005) 44:4782-4785.
  • Wu W, WIECKOWSKI S, PASTORIN G et al.: Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. (2005) 44:6358-6362.
  • ZHU Y, PENG AT, CARPENTER K et al.: Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc. (2005) 127:9875-9880.
  • GEORGANOPOULOU DG, CHANG LEI, NAM JM et al.: Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl. Acad. Sci. USA (2005) 102:2273-2276.
  • ELGHANIAN R, STORHOFF JJ, MUCIC RC et al.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science (1997) 227:1078-1081.
  • HUH YM, JUN Y, SONG HT et al.: In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. (2005) 127:12387-12391.
  • HIRSCH LR, STAFFORD RJ, BANKSON JA et al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA (2003) 100:13549-13554.
  • CAO CYW, JIN R, MIRKIN CA: Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science (2002) 297:1536-1540.
  • ROSI NL, GILJOHANN DA, THAXTON CS et al.: Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science (2006) 312:1027-1030.
  • SALEM AK, SEARSON PC, LEONG KW: Multifunctional nanorods for gene delivery. Nat. Mater. (2003) 2:668-671.
  • PACIOTTI GF, MYER L, WEINREICH D et al.: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. (2004) 11:169-183.
  • SERSHEN SR, WESTCOTT SL, HALAS NJ, WEST JL: Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. (2000) 51:293-298.
  • DAS M, SANSON N, FAVA D, KUMACHEVA E: Microgels loaded with gold nanorods: photothermally triggered volume transitions under physiological conditions. Langmuir (2007) 23:196-201.
  • GOMEZ-LOPERA SA, PLAZA RC, DELGADO AV: Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Coll. Interf. Sci. (2001) 240:40-477.
  • XU H, SONG T, BAO X, HU L: Site-directed research of magnetic nanoparticles in magnetic drug targeting. J. Magn. Magn. Mater. (2005) 293:514-519.
  • DOBSON J: Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. (2006) 13:283-287.
  • KROTZ F, DE WIT C, SOHN HY et al.: Magnetofection – a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol. Ther. (2003) 7:700-710.
  • SCHILLINGER U, BRILL T, RUDOLPH C et al.: Advances in magnetofection – magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. (2005) 293:501-508.
  • GRIEF AD, RICHARDSON G: Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. (2005) 293:455-463.
  • ROY I, OHULCHANSKYY TY, BHARALI DJ et al.: Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA (2005) 102:279-284.
  • SLOWING II, TREWYN BG, LIN VS: Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J. Am. Chem. Soc. (2007) 129:8845-8849.
  • LU J, LIONG M, ZINK JI, TAMANOI F: Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small (2007) 3:1341-3146.
  • GIRI S, TREWYN BG, STELLMAKER MP, LIN VS: Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. (2005) 44:5038-5044.
  • GERION D, PINAUD F, WILLIAMS SC et al.: Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B. (2001) 105:8861-8871.
  • Nie S, EMORY SR: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science (1997) 275:1102-1106.
  • KLAR T, PERNER M, GROSSE S, VON PLESSEN G, SPIRKL W, FELDMANN J: Surface plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. (1998) 80:4249-4252.
  • KLOSTRANEC J, CHAN WCW: Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mat. (2006) 18:1953-1964.
  • GAO XH, YANG L, PETROS JA et al.: In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. (2005) 16:63-72.
  • MICHALET X, PINAUD FF, BENTOLILA LA et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science (2005) 307:538-544.
  • BAKALOVA R, OHBA H, ZHELEV Z, ISHIKAWA M, BABA Y: Quantum dots as photosensitizers? Nat. Biotechnol. (2004) 22:1360-1361.
  • DOLMANS D, FUKUMURA D, JAIN RK: Photodynamic therapy for cancer. Nat. Rev. Cancer (2003) 3:380-387.
  • TRIESSCHEIJN M, BAAS P, SCHELLENS JHM, STEWART FA: Photodynamic therapy in oncology. Oncologist (2006) 11:1034-1044.
  • HENDERSON BW, BUSCH TM, VAUGHAN LA et al.: Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate. Cancer Res. (2000) 60:525-529.
  • GOLLNICK SO, LIU X, OWCZARCZAK B et al.: Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res. (1997) 57:3904-3909.
  • SAMIA ACS, CHEN X, BURDA C: Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. (2003) 125:15736-15737.
  • JARES-ERIJMAN EA, JOVIN TM: FRET imaging. Nat. Biotechnol. (2003) 21:1387-1395.
  • WANG D, HE J, ROSENZWEIG N, ROSENZWEIG Z: Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett. (2004) 4:409-413.
  • PELEGRINO T, MANNA L, KUDERA S et al.: Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. (2004) 4:703-707.
  • OBERDORSTER E: Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. (2004) 112:1058-1062.
  • DERFUS AM, CHAN WCW, BHATIA SN: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. (2004) 4:11-18.
  • JAISWAL JK, MATTOUSSI H, MAURO JM, SIMON SM: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. (2002) 21:47-51.
  • BALLOU B, LAGERHOLM BC, ERNST LA, BRUCHEZ MP, WAGGONER AS: Noninvasive imaging of quantum dots in mice. Bioconj. Chem. (2004) 15:79-86.
  • FISCHER HC, LIU L, PANG KS, CHAN WCW: Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv. Func. Mater. (2006) 16:1299-1305.
  • KIRPOTIN DB, DRUMMOND DC, SHAO Y et al.: Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. (2006) 66:6732-6740.
  • COHEN H, LEVY RJ, GAO J et al.: Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. (2000) 7:1896-1905.
  • KAM NWS, LIU Z, DAI H: Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. (2005) 127:12492-12493.
  • WEISSLEDER R, MOORE A, MAHMOOD U et al.: In vivo magnetic resonance imaging of transgene expression. Nat. Med. (2000) 6:351-354.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.