1,194
Views
209
CrossRef citations to date
0
Altmetric
Review

Liposomal nanomedicines

&
Pages 25-44 | Published online: 21 Dec 2007

Bibliography

  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303:1818-22
  • Abraham SA, Waterhouse DN, Mayer LD, et al. The liposomal formulation of doxorubicin. Methods Enzymol 2005;391:71-97
  • Boman NL, Masin D, Mayer LD, et al. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res 1994;54:2830-3
  • Hope MJ, Wong KF. Liposomal formulation of ciprofloxacin. In: Shek PN, editor. Liposomes in Biomedical Applications. Harwood Academic Publishers, London; 1995:121-34
  • Fenske DB, Cullis PR. Entrapment of small molecules and nucleic acid-based drugs in liposomes. Methods Enzymol 2005;391:7-40
  • Mui B, Raney SG, Semple SC, Hope MJ. Immune stimulation by a CpG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles. J Pharmacol Exp Ther 2001;298:1185-92
  • Vollmer J, Janosch A, Laucht M, et al. Highly immunostimulatory CpG-free oligodeoxynucleotides for activation of human leukocytes. Antisense Nucleic Acid Drug Dev 2002;12:165-75
  • Wilson KD, Raney SG, Sekirov L, et al. Effects of intravenous and subcutaneous administration on the pharmacokinetics, biodistribution, cellular uptake and immunostimulatory activity of CpG ODN encapsulated in liposomal nanoparticles. Int Immunopharmacol 2007;7:1064-75
  • De Jong S, Chikh G, Sekirov L, et al. Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol Immunother 2007;56:1251-64
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006;441:111-4
  • Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets 2007;8:469-82
  • Cullis PR, Hope MJ, Bally MB, et al. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim Biophys Acta 1997;1331:187-211
  • Abraham SA, Edwards K, Karlsson G, et al. Formation of transition metal–doxorubicin complexes inside liposomes. Biochim Biophys Acta 2002;1565:41-54
  • Abraham SA, Edwards K, Karlsson G, et al. An evaluation of transmembrane ion gradient-mediated encapsulation of topotecan within liposomes. J Control Rel 2004;96:449-61
  • Semple SC, Leone R, Wang J, et al. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci 2005;94:1024-38
  • Ambegia E, Ansell S, Cullis P, et al. Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim Biophys Acta 2005;1669:155-63
  • Liang MT, Davies NM, Toth I. Encapsulation of lipopeptides within liposomes: effect of number of lipid chains, chain length and method of liposome preparation. Int J Pharm 2005;301:247-54
  • Huang YY, Wang CH. Pulmonary delivery of insulin by liposomal carriers. J Control Release 2006;113:9-14
  • Vyas SP, Rawat M, Rawat A, et al. Pegylated protein encapsulated multivesicular liposomes: a novel approach for sustained release of interferon alpha. Drug Dev Ind Pharm 2006;32:699-707
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13:238-52
  • Bangham AD. Membrane models with phospholipids. Prog Biophys Mol Biol 1968;18:29-95
  • Bangham AD. Liposomes: realizing their promise. Hosp Pract (Off Ed) 1992;27:51-6, 61-2
  • Bangham AD. Surrogate cells or Trojan horses. The discovery of liposomes. Bioessays 1995;17:1081-8
  • Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 1986;858:161-8
  • Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005;16:691-707
  • Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995;55:3752-6
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Rel 2000;65:271-84
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189-207
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Rel 2001;74:47-61
  • Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 1994;15:215-20
  • Janoff AS, Boni LT, Popescu MC, et al. Unusual lipid structures selectively reduce the toxicity of amphotericin B. Proc Natl Acad Sci USA 1988;85:6122-6
  • Madden TD, Janoff AS, Cullis PR. Incorporation of amphotericin B into large unilamellar vesicles composed of phosphatidylcholine and phosphatidylglycerol. Chem Phys Lipids 1990;52:189-98
  • Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta 1986;857:123-6
  • Mayer LD, Tai LC, Bally MB, et al. Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta 1990;1025:143-51
  • Mayer LD, Tai LC, Ko DS, et al. Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res 1989;49:5922-30
  • Harrigan PR, Wong KF, Redelmeier TE, et al. Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. Biochim Biophys Acta 1993;1149:329-38
  • Mayer LD, Bally MB, Loughrey H, et al. Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Res 1990;50:575-9
  • Mayer LD, Nayar R, Thies RL, et al. Identification of vesicle properties that enhance the antitumour activity of liposomal vincristine against murine L1210 leukemia. Cancer Chemother Pharmacol 1993;33:17-24
  • Boman NL, Mayer LD, Cullis PR. Optimization of the retention properties of vincristine in liposomal systems. Biochim Biophys Acta 1993;1152:253-8
  • Webb MS, Harasym TO, Masin D, et al. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer 1995;72:896-904
  • Zamboni WC, Gervais AC, Egorin MJ, et al. Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol 2004;53:329-36
  • White SC, Lorigan P, Margison GP, et al. Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer. Br J Cancer 2006;95:822-8
  • Kim ES, Lu C, Khuri FR, et al. A Phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer 2001;34:427-32
  • Madden TD, Harrigan PR, Tai LC, et al. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids 1990;53:37-46
  • Lasic DD, Frederik PM, Stuart MC, et al. Gelation of liposome interior. A novel method for drug encapsulation. FEBS Lett 1992;312:255-8
  • Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1993;1151:201-15
  • Webb MS, Boman NL, Wiseman DJ, et al. Antibacterial efficacy against an in vivo Salmonella typhimurium infection model and pharmacokinetics of a liposomal ciprofloxacin formulation. Antimicrob Agents Chemother 1998;42:45-52
  • Lasic DD, Ceh B, Stuart MC, et al. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochim Biophys Acta 1995;1239:145-56
  • Maurer-Spurej E, Wong KF, Maurer N, Fenske DB, Cullis PR. Factors influencing uptake and retention of amino-containing drugs in large unilamellar vesicles exhibiting transmembrane pH gradients. Biochim Biophys Acta 1999;1416:1-10
  • Maurer N, Wong KF, Hope MJ, Cullis PR. Anomalous solubility behavior of the antibiotic ciprofloxacin encapsulated in liposomes: a 1H-NMR study. Biochim Biophys Acta 1998;1374:9-20
  • Li X, Hirsh DJ, Cabral-Lilly D, et al. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. Biochim Biophys Acta 1998;1415:23-40
  • Johnston MJ, Semple SC, Klimuk SK, et al. Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim Biophys Acta 2006;1758:55-64
  • Fenske DB, Wong KF, Maurer E, et al. Ionophore-mediated uptake of ciprofloxacin and vincristine into large unilamellar vesicles exhibiting transmembrane ion gradients. Biochim Biophys Acta 1998;1414:188-204
  • Wheeler JJ, Veiro JA, Cullis PR. Ionophore-mediated loading of Ca2+ into large unilamellar vesicles in response to transmembrane pH gradients. Mol Membr Biol 1994;11:151-7
  • Zhigaltsev IV, Maurer N, Akhong QF, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Rel 2005;104:103-11
  • Sarris AH, Hagemeister F, Romaguera J, et al. Liposomal vincristine in relapsed non-Hodgkin's lymphomas: early results of an ongoing Phase II trial. Ann Oncol 2000;11:69-72
  • Rodriguez MA, Sarris A, East K, et al. A Phase II study of liposomal vincristine in CHOP with rituximab for elderly patients with untreated aggressive B-cell non-Hodgkin's lymphoma (NHL). Proc Am Soc Clin Oncol 2002;21:Abstract 1132
  • Rodriguez MA, Dang NH, Fayad L, et al. Sphingosomal vincristine in CHOP is a promising new treatment for elderly, as well as poor prognosis patients with aggressive non-Hodgkin's lymphoma (NHL): follow-up results of a Phase II study. J Clin Oncol 2004;22:8080
  • Boehlke L, Winter JN. Sphingomyelin/cholesterol liposomal vincristine: a new formulation for an old drug. Expert Opin Biol Ther 2006;6:409-15
  • Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346:235-42
  • Cheung BC, Sun TH, Leenhouts JM, Cullis PR. Loading of doxorubicin into liposomes by forming Mn2+–drug complexes. Biochim Biophys Acta 1998;1414:205-16
  • Chiu GN, Abraham SA, Ickenstein LM, et al. Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Rel 2005;104:271-88
  • Taggar AS, Alnajim J, Anantha M, et al. Copper-topotecan complexation mediates drug accumulation into liposomes. J Control Rel 2006;114:78-88
  • Zhigaltsev IV, Maurer N, Edwards K, et al. Formation of drug–arylsulfonate complexes inside liposomes: a novel approach to improve drug retention. J Control Rel 2006;110:378-86
  • Drummond DC, Noble CO, Guo Z, et al. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res 2006;66:3271-7
  • Johnston MJ, Semple SC, Klimuk SK, et al. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta 2007;1768:1121-7
  • Ramsay EC, Dos Santos N, Dragowska WH, Laskin JJ, Bally MB. The formulation of lipid-based nanotechnologies for the delivery of fixed dose anticancer drug combinations. Curr Drug Deliv 2005;2:341-51
  • Abraham SA, McKenzie C, Masin D, et al. In vitro and in vivo characterization of doxorubicin and vincristine coencapsulated within liposomes through use of transition metal ion complexation and pH gradient loading. Clin Cancer Res 2004;10:728-38
  • Tardi PG, Gallagher RC, Johnstone S, et al. Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim Biophys Acta 2007;1768:678-87
  • Mayer LD, Harasym TO, Tardi PG, et al. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol Cancer Ther 2006;5:1854-63
  • Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005;7:E61-77
  • Fenske DB, Maclachlan I, Cullis PR. Long-circulating vectors for the systemic delivery of genes. Curr Opin Mol Ther 2001;3:153-8
  • Wheeler JJ, Palmer L, Ossanlou M, et al. Stabilized plasmid-lipid particles: construction and characterization. Gene Ther 1999;6:271-81
  • Tam P, Monck M, Lee D, et al. Stabilized plasmid-lipid particles for systemic gene therapy. Gene Ther 2000;7:1867-74
  • Fenske DB, Maclachlan I, Cullis PR. Stabilized plasmid-lipid particles: a systemic gene therapy vector. Methods Enzymol 2002;346:36-71
  • Fenske DB, Maurer N, Cullis PR. Encapsulation of weakly-basic drugs, antisense oligonucleotides, and plasmid DNA within large unilamellar vesicles for drug delivery applications. In: Torchilin VP, Weissig V, editors. Liposomes: A Practical Approach. Oxford: Oxford University Press, 2003. p. 167-91
  • Zhang YP, Sekirov L, Saravolac EG, et al. Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther 1999;6:1438-47
  • Maurer N, Wong KF, Stark H, et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys J 2001;80:2310-26
  • Semple SC, Klimuk SK, Harasym TO, et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta 2001;1510:152-66
  • Stuart DD, Semple SC, Allen TM. High efficiency entrapment of antisense oligonucleotides in liposomes. Methods Enzymol 2004;387:171-88
  • Jeffs LB, Palmer LR, Ambegia EG, et al. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm Res 2005;22:362-72
  • Fenske DB, Palmer LR, Chen T, et al. Cationic poly(ethyleneglycol) lipids incorporated into pre-formed vesicles enhance binding and uptake to BHK cells. Biochim Biophys Acta 2001;1512:259-72
  • Palmer LR, Chen T, Lam AM, et al. Transfection properties of stabilized plasmid-lipid particles containing cationic PEG lipids. Biochim Biophys Acta 2003;1611:204-16
  • Heyes J, Palmer L, Bremner K, Maclachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Rel 2005;107:276-87
  • Heyes J, Palmer L, Chan K, et al. Lipid encapsulation enables the effective systemic delivery of polyplex plasmid DNA. Mol Ther 2007;15:713-20
  • Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007;59:75-86
  • Kong Y, Ruan L, Ma L, et al. RNA interference as a novel and powerful tool in immunopharmacological research. Int Immunopharmacol 2007;7:417-26
  • Masiero M, Nardo G, Indraccolo S, Favaro E. RNA interference: implications for cancer treatment. Mol Aspects Med 2007;28:143-66
  • Sioud M. RNA interference and innate immunity. Adv Drug Deliv Rev 2007;59:153-63
  • Stein CA, Cohen JS. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res 1988;48:2659-68
  • Geisbert TW, Hensley LE, Kagan E, et al. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 2006;193:1650-7
  • Heeg K, Sparwasser T, Lipford GB, et al. Bacterial DNA as an evolutionary conserved ligand signalling danger of infection to immune cells. Eur J Clin Microbiol Infect Dis 1998;17:464-9
  • Lipford GB, Heeg K, Wagner H. Bacterial DNA as immune cell activator. Trends Microbiol 1998;6:496-500
  • Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003;198:513-20
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413:732-8
  • Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303:1526-9
  • Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23:457-62
  • Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740-5
  • Bauer S, Kirschning CJ, Hacker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001;98:9237-42
  • Kirschning CJ, Bauer S. Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses. Int J Med Microbiol 2001;291:251-60
  • Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11:263-70
  • Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 2005;348:1079-90
  • Judge AD, Bola G, Lee AC, Maclachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo Mol Ther 2006;13:494-505
  • Monteith DK, Henry SP, Howard RB, et al. Immune stimulation – a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anticancer Drug Des 1997;12:421-32
  • Boggs RT, McGraw K, Condon T, et al. Characterization and modulation of immune stimulation by modified oligonucleotides. Antisense Nucleic Acid Drug Dev 1997;7:461-71
  • Roman M, Martin-Orozco E, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997;3:849-54
  • Chu RS, Targoni OS, Krieg AM, et al. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 1997;186:1623-31
  • Elkins KL, Rhinehart-Jones TR, Stibitz S et al. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J Immunol 1999;162:2291-8
  • Klinman DM, Conover J, Coban C. Repeated administration of synthetic oligodeoxynucleotides expressing CpG motifs provides long-term protection against bacterial infection. Infect Immun 1999;67:5658-63
  • Gursel I, Gursel M, Ishii KJ, Klinman DM. Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J Immunol 2001;167:3324-8
  • Allen TM, Sapra P, Moase E, Moreira J, Iden D. Adventures in targeting. J Liposome Res 2002;12:5-12
  • Allen TM, Mumbengegwi DR, Charrois GJ. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin Cancer Res 2005;11:3567-73
  • Cheng WW, Das D, Suresh M, Allen TM. Expression and purification of two anti-CD19 single chain Fv fragments for targeting of liposomes to CD19-expressing cells. Biochim Biophys Acta 2007;1768:21-9
  • Pastorino F, Brignole C, Marimpietri D, et al. Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clin Cancer Res 2003;9:4595-605
  • Pastorino F, Brignole C, Di Paolo D, et al. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res 2006;66:10073-82
  • Sapra P, Allen TM. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 2002;62:7190-4
  • Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 2003;42:439-62
  • Sapra P, Moase EH, MA J, Allen TM. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments. Clin Cancer Res 2004;10:1100-11
  • Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2005;2:369-81
  • Chen T, McIntosh D, He Y, et al. Alkylated derivatives of poly(ethylacrylic acid) can be inserted into preformed liposomes and trigger pH-dependent intracellular delivery of liposomal contents. Mol Membr Biol 2004;21:385-93
  • Finn J, Lee AC, Maclachlan I, Cullis P. An enhanced autogene-based dual-promoter cytoplasmic expression system yields increased gene expression. Gene Ther 2004;11:276-83
  • Finn J, Maclachlan I, Cullis P. Factors limiting autogene-based cytoplasmic expression systems. FASEB J 2005;19:608-10
  • Tekmira Pharmaceuticals Available from: www.inexpharm.com [Accessed 5th December 2007]
  • Hana Biosciences Available from: www.hanabiosciences.com [Accessed 5th December 2007]
  • Aradigm Corporation Available from: www.aradigm.com [Accessed 5th December 2007]
  • Pfizer Available from: www.pfizer.com/home [Accessed 5th December 2007]
  • Alnylam Pharmaceuticals Available from: www.alnylam.com [Accessed 5th December 2007]
  • Alza Available from: www.alza.com [Accessed 5th December 2007]
  • Antigenics Available from: www.antigenics.com [Accessed 5th December 2007]
  • Celsion Corporation Available from: www.celsion.com [Accessed 5th December 2007]
  • Gilead Available from: www.gilead.com [Accessed 5th December 2007]
  • Enzon Pharmaceuticals Available from: www.enzon.com [Accessed December 2007]
  • Samaritan Pharmaceuticals Available from: www.samaritanpharma.com [Accessed December 2007]
  • Three Rivers Pharmaceuticals Available from: www.3riverspharma.com [Accessed December 2007]
  • Diatos Available from: www.diatos.com [Accessed December 2007]
  • Sopherion Therapeutics Available from: www.sopherion.com [Accessed December 2007]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.