473
Views
74
CrossRef citations to date
0
Altmetric
Review

Past and future evolution in colloidal drug delivery systems

, PhD MRACI CChem
Pages 69-85 | Published online: 21 Dec 2007

Bibliography

  • Hofmann AF, Borgstrom B. Physico-chemical state of lipids in intestinal content during their digestion and absorption. Gastroenterology 1962;21:43-50
  • Tso P, Balint JA. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am J Physiol 1986;250(6 Pt 1): G715-G726
  • Driscoll DF. Lipid injectable emulsions: pharmacopeial and safety issues. Pharm Res 2006;23(9):1959-69
  • Fee JPH, Mcclean E, Collier PS, Dundee JW. Plasma diazepam concentrations following intravenous valium and valium mixed micelles. Br J Clin Pharmacol 1985;19(4):P581
  • Winn MJ, White PM, Scott AK, Pratt SK, Park BK. The bioavailability of a mixed micellar preparation of vitamin-K1, and its procoagulant effect in anticoagulated rabbits. J Pharm Pharmacol 1989;41(4):257-60
  • Trissel LA. Pharmaceutical properties of paclitaxel and their effects on preparation and administration. Pharmacotherapy 1997;17(5):S133-S139
  • Ceh B, Winterhalter M, Frederik PM, Vallner JJ, Lasic DD. Stealth(R) liposomes: from theory to product. Adv Drug Deliv Rev 1997;24(2-3):165-77
  • Kawano K, Watanabe M, Yamamoto T, et al. Enhanced antitumor effect of camptothecin loaded in long-circulating polymeric micelles. J Control Rel 2006;112(3):329-32
  • Lukyanov AN, Hartner WC, Torchilin VP. Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Rel 2004;94(1):187-93
  • Verma DD, Hartner WC, Levchenko TS, Bernstein EA, Torchilin VP. ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res 2005;22(12):2115-20
  • Piskin E, Kaitian X, Denkbas EB, Kucukyavuz Z. Novel Pdlla/Peg copolymer micelles as drug carriers. J Biomat Sci Polym Ed 1995;7(4):359-73
  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007;24(1):1-16
  • Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 2007;24(6):1029-46
  • Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Rel 2001;74(1-3):295-302
  • Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004;91(10):1775-81
  • Uwatoku T, Shimokawa H, Abe K, et al. Application of nanoparticle technology for the prevention of restenosis after balloon injury in rats. Circ Res 2003;92(7):E62-E69
  • Trimaille T, Gurny R, Moller M. Poly(hexyl-substituted lactides): novel injectable hydrophobic drug delivery systems. J Biomed Mater Res Part A 2007;80A(1):55-65
  • Mastrobattista E, Koning GA, Storm G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv Drug Deliv Rev 1999;40(1-2):103-27
  • Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Rel 2003;91(1-2):103-13
  • Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2001;2(4):1067-70
  • Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999;6(4):595-605
  • Elbayoumi TA, Pabba S, Roby A, Torchilin VP. Antinucleosome antibody-modified liposomes and lipid-core micelles for tumor-targeted delivery of therapeutic and diagnostic agents. J Liposome Res 2007;17(1):1-14
  • Torchilin VP, Lukyanov AN, Gao ZG, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Nat Acad Sci USA 2003;100(10):6039-44
  • Roby A, Erdogan S, Torchilin VP. Enhanced in vivo antitumor efficacy of poorly soluble PDT agent, meso-tetraphenylporphine, in PEG-PE-based tumor-targeted immunomicelles. Cancer Biol Ther 2007;6:In Press
  • Gregoriadis G, editor. Liposome Technology. 3rd ed., London: Informa Healthcare; 2006
  • Lasic DD, editor. Liposomes: from Physics to Applications. Amsterdam: Elsevier 1993
  • Liang MT, Davies NM, Toth I. Encapsulation of lipopeptides within liposomes: effect of number of lipid chains, chain length and method of liposome preparation. Int J Pharm 2005;301(1-2):247-54
  • Allen TM, Hansen C, Martin F, Redemann C, Yauyoung A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991;1066(1):29-36
  • Chanan-Khan A, Szebeni J, Savay S, et al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 2003;14(9):1430-7
  • Moghimi SM, Hamad I, Andresen TL, Jorgensen K, Szebeni J. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J 2006;20(14):2591-3
  • Wang XY, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Rel 2007;119(2):236-44
  • Ishida T, Harada M, Wang XY, et al. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Rel 2005;105(3):305-17
  • Romberg B, Oussoren C, Snel CJ, et al. Pharmacokinetics of poly(hydroxyethyl-L-asparagine)-coated liposomes is superior over that of PEG-coated liposomes at low lipid dose and upon repeated administration. Biochim Biophys Acta Biomembranes 2007;1768(3):737-43
  • Pardridge WM. Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev 1999;36(2-3):299-321
  • Nobs L, Buchegger F, Gurny R, Allemann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 2004;93(8):1980-92
  • Kawakami S, yamashita F, Nishikawa M, Takakura Y, Hashida M. Asialoglycoprotein receptor-mediated gene transfer using novel galactosylated cationic liposomes. Biochem Biophys Res Commun 1998;252(1):78-83
  • Kawakami S, Sato A, Nishikawa M, Yamashita F, Hashida M. Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 2000;7(4):292-9
  • Nellis DF, Ekstrom DL, Kirpotin DB, et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol Prog 2005;21(1):205-20
  • Liu F, Liu D. Long-circulating emulsions (Oil-in-water) as carriers for lipophilic drugs. Pharm Res 1995;12(7):1060-4
  • Song YK, Liu DX, Maruyama K, Takizawa T. Antibody mediated lung targeting of long-circulating emulsions. PDA J Pharm Sci Tech 1996;50(6):372-7
  • Goldstein D, Sader O, Benita S. Influence of oil droplet surface charge on the performance of antibody-emulsion conjugates. Biomed Pharmacother 2007;61(1):97-103
  • Bennett SN, Mcneil MM, Bland LA, et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Eng J Med 1995;333(3):147-54
  • Constantinides PP, Lambert KJ, Tustian AK, et al. Formulation development and antitumour activity of a filter-sterilizable emulsion of paclitaxel. Pharm Res 2000;17(2):175-82
  • Hanauske AR, Goedhals L, Gelderblom H, et al. Tocosol (R) paclitaxel and cremophorel (R)-paclitaxel: the pharmacokinetic comparison shows that a new paclitaxel formulation leads to increased drug exposure. EJC Suppl 2005;3(2):427-7
  • Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs - a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 2004;113(1-3):151-70
  • Fukumori Y, Ichikawa H. Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 2006;17(1):1-28
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004;56(9):1257-72
  • Mehnert W, Mader K. Solid lipid nanoparticles - production, characterization and applications. Adv Drug Deliv Rev 2001;47(2-3):165-96
  • Westesen K. Novel lipid-based colloidal dispersions as potential drug administration systems - expectations and reality. Coll Polym Sci 2000;278(7):608-18
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000;50(1):161-77
  • Baba K, Pudavar HE, Roy I, et al. New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Mol Pharm 2007;4(2):289-97
  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003;55(3):403-19
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307(1):93-102
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007;28(5):869-76
  • Wartlick H, Michaelis K, Balthasar S, et al. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target 2004;12(7):461-71
  • Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F. Differential tumor cell targeting of anti-HER2 (Herceptin (R) and anti-CD20 Mabthera (R)) coupled nanoparticles. Int J Pharm 2007;331(2):190-6
  • Seo SJ, Moon HS, Guo DD, et al. Receptor-mediated delivery of all-trans-retinoic acid (ATRA) to hepatocytes from ATRA-loaded poly(N-p-vinylbenzyl-4-o-beta-D-galactopyranosyl-D-gluconamide) nanoparticles. Mater Sci Eng C Biomimetic Supramol Syst 2006;26(1):136-41
  • Fonseca C, Simoes S, Gaspar RE. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Rel 2002;83(2):273-86
  • Jinno J, Kamada N, Miyake M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Rel 2006;111(1-2):56-64
  • Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs. Part 1. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 1995;125:91-7
  • Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006;62(1):3-16
  • Desai NP, Tao C, Yang A, et al. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof Vivorx Pharmaceuticals, Inc.: US5916596 (1999)
  • Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 2004;284(1-2):109-22
  • Robinson DM, Keating GM. Albumin-bound paclitaxel - in metastatic breast cancer. Drugs 2006;66(7):941-8
  • Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 2005;23(31):7794-803
  • Carver LA, Schnitzer JE. Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 2003;3(8):571-81
  • Motamed K. SPARC (osteonectin/BM-40). Int J Biochem Cell Biol 1999;31(12):1363-6
  • Wang CS, Lin KH, Chen SL, Chan YF, Hsueh S. Overexpression of SPARC gene in human gastric carcinoma and its clinic-pathologic significance. Br J Cancer 2004;91(11):1924-30
  • Zeng FW, ZIMMERMAN SC. Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem Rev 1997;97(5):1681-1712
  • Gupta U, Agashe HB, Asthana A, Jain NK. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules 2006;7(3):649-58
  • Crampton HL, Simanek EE. Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym Int 2007;56(4):489-96
  • Bourne N, Stanberry LR, Kern ER, et al. Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob Agents Chemother 2000;44:2471-4
  • Shaunak S, Thomas S, Gianasi E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004;22(8):977-84
  • Tang SZ, June SM, Howell BA, Chai MH. Synthesis of salicylate dendritic prodrugs. Tetrahedron Lett 2006;47(44):7671-5
  • Luman NR, Kim T, Grinstaff MW. Dendritic polymers composed of glycerol and succinic acid: synthetic methodologies and medical applications. Pure Appl Chem 2004;76(7-8):1375-85
  • Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005;57(15):2177-202
  • Yamagata M, Kawano T, Shiba K, et al. Structural advantage of dendritic poly(L-lysine) for gene delivery into cells. Bioorg Med Chem 2007;15(1):526-32
  • Kang HM, Delong R, Fisher MH, Juliano RL. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 2005;22(12):2099-106
  • Jevprasesphant R, Penny J, Attwood D, McKeown NB, D'Emanuele A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 2003;20(10):1543-50
  • Gajbhiye V, Kumar PV, Tekade RK, Jain NK. Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des 2007;13(4):415-29
  • Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 2007;28(3):504-12
  • Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 2006;14(8):546-56
  • Florence AT, Sakthivel T, Toth I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Rel 2000;65(1-2):253-9
  • Agrawal P, Gupta U, Jain NK. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 2007;28(22):3349-59
  • Dhanikula RS, Hildgen P. Synthesis and evaluation of novel dendrimers with a hydrophilic interior as nanocarriers for drug delivery. Bioconj Chem 2006;17(1):29-41
  • Aulenta F, Hayes W, Rannard S. Dendrimers: a new class of nanoscopic containers and delivery devices. Eur Polym J 2003;39(9):1741-71
  • Baars MWPL, Meijer EW. Host-guest chemistry of dendritic molecules. Top Curr Chem 2000;210:131-82
  • Beezer AE, King ASH, Martin IK, et al. Dendrimers as potential drug carriers;encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron 2003;59(22):3873-80
  • Ihre HR, Padilla de Jesus OL, Szoka FC Jr, Frechet JMJ. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconj Chem 2002;13(3):443-52
  • Liu MJ, Frechet JMJ. Designing dendrimers for drug delivery. Pharm Sci Tech Today 1999;2(10):393-401
  • Jansen JFGA, De Brabander-van den Berg EMM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science 1994;266(5188):1226-9
  • Jansen JFGA, Meijer EW. The dendritic box: shape selective liberation of encapsulated guests. J Am Chem Soc 1995;117:4417-18
  • Kleinman MH, Flory JH, Tomalia DA, Turro NJ. Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol. J Phys Chem B 2000;104(48):11472-9
  • Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconj Chem 2000;11(6):910-17
  • Milhem OM, Myles C, McKeown NB, Attwood D, D'Emanuele A. Polyamidoamine starburst dendrimers as solubility enhancers. Int J Pharm 2000;197:239-41
  • Twymana TJ, Beezerb AE, Esfandb R, Hardyc MJ, Mitchell JC. The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Lett 1999;40:1743-6
  • Watkins DM, Sayed-Sweet Y, Klimash JW, Turro NJ, Tomalia D. Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer-surfactant assemblies. Langmuir 1997;13:3136-41
  • Morgan MT, Nakanishi Y, Kroll DJ, et al. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 2006;66(24):11913-21
  • Magenheim B, Levy MY, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. Int J Pharm 1993;94(1-3):115-23
  • Majoros IJ, Thomas TP, Mehta CB, Baker JR. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem 2005;48(19):5892-9
  • Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002;19(9):1310-16
  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 2006;7(2):572-9
  • Tansey W, Ke S, Cao XY, et al. Synthesis and characterization of branched poly(L-glutamic acid) as a biodegradable drug carrier. J Control Rel 2004;94(1):39-51
  • Gurdag S, Khandare J, Stapels S, Matherly LH, Kannan RM. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconj Chem 2006;17(2):275-83
  • Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 2003;259(1-2):143-60
  • Fernandes EGR, De Queiroz AAA, Abraham GA, San Roman J. Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J Mater Sci Mater Med 2006;17(2):105-11
  • Najlah M, Freeman S, Attwood D, D'Emanuele A. Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm 2006;308(1-2):175-82
  • Tripathi PK, Khopade AJ, Nagaich S, et al. Dendrimer grafts for delivery of 5-flurouracil. Pharmazie 2002;57(4):261-4
  • Kobayashi H, Kawamoto S, Jo SK, et al. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconj Chem 2003;14(2):388-94
  • Kobayashi H, Kawamoto S, Saga T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med 2001;46(4):781-8
  • Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 2005;57(15):2271-86
  • Kobayashi H, Kawamoto S, Choyke PL, et al. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med 2003;50(4):758-66
  • Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. J Biomed Mater Res 1996;30(1):53-65
  • Wilbur DS, Pathare PM, Hamlin DK, Buhler KR, Vessella RL. Biotin reagents for antibody pretargeting. 3. Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers. Bioconjug Chem 1998;9(6):813-25
  • Okuda T, Kawakami S, Maeie T, et al. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J Control Rel 2006;114(1):69-77
  • Jelinkova M, Strohalm J, Etrych T, Ulbrich K, Rihova B. Starlike vs. classic macromolecular prodrugs: two different antibody-targeted HPMA copolymers of doxorubicin studied in vitro and in vivo as potential anticancer drugs. Pharm Res 2003;20(10):1558-64
  • Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 1999;10(8):767-76
  • Laverman P, Carstens MG, Boerman OC, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther 2001;298(2):607-12
  • Ishida T, Harashima H, Kiwada H. Liposome clearance. Biosci Rep 2002;22(2):197-224
  • Ishida T, Atobe K, Wang XY, Kiwada H. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Rel 2006;115(3):251-8
  • Okuda T, Kawakami S, Akimoto N, et al. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Rel 2006;116(3):330-6
  • Kaminskas LM, Porter CJH, Boyd BJ. PEGylated and anionic poly-L-lysine dendrimers do not show the accelerated blood clearance effect exhibited by PEGylated liposomes. 5th International Dendrimer Symposium. Toulouse, France; 2007
  • Gillies ER, Frechet JMJ. Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J Am Chem Soc 2002;124(47):14137-46
  • Gillies ER, Dy E, Frechet JMJ, Szoka FC Jr. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “Bow-Tie” hybrids with tunable molecular weight and architecture. Mol Pharm 2005;2(2):129-38
  • Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res Part A 2007;82A(1):92-103
  • Man N, Cheng YY, Xu TW, et al. Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. Eur J Med Chem 2006;41(5):670-4
  • Taite LJ, West JL. Poly(ethylene glycol)-lysine dendrimers for targeted delivery of nitric oxide. J Biomater Sci Polym Ed 2006;17(10):1159-72
  • Kaminskas LM, Boyd BJ, Karellas P, Krippner G, Porter CJH. Pharmacokinetics and biodistribution of anionic aryl sulphonate capped poly-L-lysine dendrimers in rats. Mol Pharm 2007;In Press
  • Boyd BJ, Kaminskas LM, Karellas P, et al. Cationic poly-L-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol Pharm 2006;3(5):614-27
  • Maruyama K. In vivo targeting by liposomes. Biol Pharm Bull 2000;23(7):791-9
  • Tamilvanan S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res 2004;43(6):489-533
  • Hashida M, Kawakami S, Yamashita F. Lipid carrier systems for targeted drug and gene delivery. Chem Pharm Bull 2005;53(8):871-80
  • Khandare J, Minko T. Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 2006;31(4):359-97
  • Nahar M, Dutta T, Murugesan S, et al. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Crit Rev Ther Drug Carr Syst 2006;23(4):259-318
  • Svenson S, Tomalia DA. Commentary – dendrimers in biomedical applications – reflections on the field. Adv Drug Deliv Rev 2005;57(15):2106-29
  • Bai SH, Thomas C, Rawat A, Ahsan F. Recent progress in dendrimer-based nanocarriers. Crit Rev Ther Drug Carr Syst 2006;23(6):437-95
  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004;33(1):43-63
  • Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007;6:231-48
  • Malmsten M. Phase transformations in self-assembly systems for drug delivery applications. J Dispers Sci Technol 2007;28(1):63-72
  • Drummond CJ, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interf Sci 999;4:449-56
  • Kratz F, Beyer U, Roth T, et al. Transferrin conjugates of doxorubicin: synthesis, characterization, cellular uptake, and in vitro efficacy. J Pharm Sci 1998;87(3):338-46
  • Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003;21(7):778-84
  • Hamann PR, Hinman LM, Beyer CF, et al. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconj Chem 2005;16(2):346-53
  • Boeckler C, Frisch B, Muller S, Schuber F. Immunogenicity of new heterobifunctional cross-linking reagents used in the conjugation of synthetic peptides to liposomes. J Immunol Methods 1996;191(1):1-10
  • Bridger GJ, Abrams MJ, Padmanabhan S, et al. A comparison of cleavable and noncleavable hydrazinopyridine linkers for the Tc-99m labeling of Fab'monoclonal antibody fragments. Bioconj Chem 1996;7(2):255-64
  • Masson C, Garinot M, Mignet N, et al. pH-sensitive PEG lipids containing orthoester linkers: new potential tools for nonviral gene delivery. J Control Rel 2004;99(3):423-34
  • Mao WG, Luis E, Ross S, et al. EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res 2004;64(3):781-8
  • Zimmermann K, Gianollini S, Schubiger PA, Novak-Hofer I. A triglycine linker improves tumor uptake and biodistributions of 67-Cu-labeled anti-neuroblastoma MAb chCE7 F(ab ‘)(2) fragments. Nucl Med Biol 1999;26(8):943-50
  • Kukis DL, Novak-Hofer I, Denardo SJ. Cleavable linkers to enhance selectivity of antibody-targeted therapy of cancer. Cancer Biother Radiopharm 2001;16(6):457-67
  • Denardo GL, Denardo SJ. Evaluation of a cathepsin-cleavable peptide linked radioimmunoconjugate of a panadenocarcinoma Mab, m170, in mice and patients. Cancer Biother Radiopharm 2004;19(1):85-92
  • Trimble SP, Marquardt D, Anderson DC. Use of designed peptide linkers and recombinant hemoglobin mutants for drug delivery: in vitro release of an angiotensin II analog and kinetic modeling of delivery. Bioconj Chem 1997;8(3):416-23
  • Ali SA, Joao HC, Hammerschmid F, Eder J, Steinkasserer A: Transferrin Trojan horses as a rational approach for the biological delivery of therapeutic peptide domains. J Biol Chem 1999;274(34):24066-73
  • Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Rel 2003;88(1):35-42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.