414
Views
33
CrossRef citations to date
0
Altmetric
Review

Lipid implants as drug delivery systems

, , PhD & , PhD
Pages 291-307 | Published online: 05 Mar 2008

Bibliography

  • Setter SM, Levien TL, Iltz JL, et al. Inhaled dry powder insulin for the treatment of diabetes mellitus. Clin Ther 2007;29(5):795-813
  • Cleland JL, Johnson OL, Putney S, Jones AJS. Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Adv Drug Deliv Rev 1997;28:71-84
  • Ravivarapu HB, Burton K, DeLuca PP. Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur J Pharm Biopharm 2000;50:263-70
  • Menei P, Capelle L, Guyotat J, et al. Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized phase II trial. Neurosurgery 2005;56:242-8
  • Jiang W, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 2005;57:391-410
  • Clavreul A, Sindji L, Aubert-Pouessel A, et al. Effect of GDNF-releasing biodegradable microspheres on the function and the survival of intrastriatal fetal ventral mesencephalic cell grafts. Eur J Pharm Biopharm 2006;63:221-8
  • Brunner A, Maeder K, Goepferich A. PH and osmotic pressure inside biodegradable microspheres during erosion. Pharm Res 1999;16(6):847-53
  • Li L, Schwendeman SP. Mapping neutral microclimate pH in PLGA microspheres. J Control Rel 2005;101:163-73
  • Jiang W, Schwendeman SP. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D,L-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res 2001;18(6):878-85
  • Lucke A, Goepferich A. Acylation of peptides by lactic acid solutions. Eur J Pharm Biopharm 2003;55:27-33
  • Na DH, Youn YS, Lee SD, et al. Monitoring of peptide acylation inside degrading PLGA microspheres by capillary electrophoresis and MALDI-TOF mass spectrometry. J Control Rel 2003;92:291-9
  • Estey T, Kang J, Schwendeman SP, Carpenter JF. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J Pharm Sci 2006;95(7):1626-39
  • Wang PY. Lipids as excipient in sustained release insulin implants. Int J Pharm 1989;54:223-30
  • Allababidi S, Shah JC. Kinetics and mechanism of release from glyceryl monostearate-based implants: evaluation of release in a gel simulating in vivo implantation. J Pharm Sci 1998;87(6):738-44
  • Maschke A, Lucke A, Vogelhuber W, et al. Lipids: an alternative material for protein and peptide release. In: Carrier Based Drug Delivery. ACS Symposium Series. Svenson S, editor. American Chemical Society, Washington; 2004. p. 176-96
  • Mohl S, Winter G. Continuous release of rh-interferon α-2a from triglyceride matrices. J Control Rel 2004;97:67-78
  • Ho EA, Vassileva V, Allen C, Piquette-Miller M. In vitro and in vivo characterization of a novel biocompatible polymer-lipid implant system for the sustained delivery of paclitaxel. J Control Rel 2005;104:181-91
  • Appel B, Maschke A, Weiser B, et al. Lipidic implants for controlled release of bioactive insulin: Effects on cartilage engineered in vitro. Int J Pharm 2006;314:170-8
  • Koennings S, Garcion E, Faisant N, et al. In vitro investigation of lipid implants as a controlled release system for interleukin-18. Int J Pharm 2006;314(2):145-52
  • Morlock M. Koll H, Winter G, Kissel T. Microencapsulation of rh-erythropoietin, using biodegradable poly(D,L-lactide-co-glycolide): protein stability and the effects of stabilizing excipients. Eur J Pharm Biopharm 1997;43:29-36
  • Iwata M, Tanaka T, Nakamura Y, McGinity JW. Selection of the solvent system for the preparation of poly(D,L-lactic-co-glycolic acid) microspheres containing tumor necrosis factor-alpha (TNF-α). Int J Pharm 1998;160:145-56
  • Krishnamurthy R, Lumpkin JA, Sridhar R. Inactivation of lysozyme by sonication under conditions relevant to microencapsulation. Int J Pharm 2000;205:23-34
  • Kang F, Jiang G, Hinderliter A, et al. Lysozyme stability in primary emulsion for PLGA microsphere preparation: effect of recovery methods and stabilizing excipients. Pharm Res 2002;19(5):629-33
  • Bilati U, Allemann E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm 2005;59:375-88
  • Sah H. Stabilization of proteins against methylene chloride/water interface-induced denaturation and aggregation. J Control Rel 1999;58:143-51
  • Van de Weert M, Hoechstetter J, Hennink WE, Crommelin DJA. The effect of a water/organic solvent interface on the structural stability of lysozyme. J Control Rel 2000;68:351-9
  • Kwon YM, Baudys M, Knutson K, Kim SW. In situ study of insulin aggregation induced by water-organic solvent interface. Pharm Res 2001;18(12):1754-9
  • Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm 2005;289:1-30
  • Chilukuri DM, Shah JC. Local delivery of vancomycin for the prophylaxis of prosthetic device-related infections. Pharm Res 2005;22(4):563-72
  • Jollivet C, Aubert-Pouessel A, Clavreul A, et al. Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson's disease. Biomaterials 2004;25:933-42
  • Fournier E, Passirani C, Colin N, et al. The brain tissue response to biodegradable poly(methylidene malonate 2.1.2)-based microspheres in the rat. Biomaterials 2006;27:4963-74
  • Elkharraz K, Faisant N, Guse C, et al. Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: preparation and physicochemical characterization. Int J Pharm 2006;314:127-36
  • Siepmann J, Siepmann F, Florence AT. Local controlled drug delivery to the brain: Mathematical modeling of the underlying mass transport mechanisms. Int J Pharm 2006;314:101-19
  • Kent JS. Cholesterol matrix delivery system for sustained release of macromolecules. US4452775 (1984)
  • Cady SM, Fishbein R. Partially coated C10-C20 fatty acid salts of peptides having molecular weights up to about 5000. US5137874 (1992)
  • Opdebeeck JP, Tucker IG. A cholesterol implant used as a delivery system to immunize mice with bovine serum albumin. J Control Rel 1993;23(3):271-9
  • Wang PY. Implant preparations containing bioactive macromolecule for sustained delivery. US5939380 (1999)
  • Yamagata Y, Iga K, Ogawa Y. Novel sustained-release dosage forms of proteins using polyglycerol esters of fatty acids. J Control Rel 2000;63:319-29
  • Lee HY, Kim SK, Kim JS, et al. Protein-containing lipid implant for sustained delivery and its preparation method. WO2005102284 (2005)
  • Koennings S, Sapin A, Blunk T, et al. Towards controlled release of BDNF – manufacturing strategies for protein-loaded lipid implants and biocompatibility evaluation in the brain. J Control Rel 2007;119:163-72
  • Morita T, Horikiri Y, Yamahara H, et al. Formation and isolation of spherical fine protein microparticles through lyophilization of protein-poly(ethylene glycol) aqueous mixture. Pharm Res 2000;17:1367-73
  • Vogelhuber W, Magni E, Gazzaniga A, Goepferich A. Monolithic glyceryl trimyristate matrices for parenteral drug release applications. Eur J Pharm Biopharm 2003;55:133-8
  • Guse C, Koennings S, Kreye F, et al. Drug release from lipid-based implants: elucidation of the underlying mass transport mechanisms. Int J Pharm 2006;314:137-44
  • Koennings S, Berie A, Tessmar J, et al. Influence of wettability and surface activity on release behavior of hydrophilic substances from lipid matrices. J Control Rel 2007;119(2):173-81
  • Vogelhuber W, Magni E, Mouro M, et al. Monolithic triglyceride matrices: a controlled-release system for proteins. Pharm Dev Technol 2003;8(1):71-9
  • Pongjanyakul T, Medlicott NJ, Tucker IG. Melted glyceryl palmitostearate (GPS) pellets for protein delivery. Int J Pharm 2004;271(1-2):53-62
  • Herrmann S, Winter G, Mohl S, et al. Mechanisms controlling protein release from lipidic implants: effects of PEG addition. J Control Rel 2007;118:161-8
  • Herrmann S, Mohl S, Siepmann F, et al. New insight into the role of polyethylene glycol acting as protein release modifier in lipidic implants. Pharm Res 2007;24(8):1527-37
  • Siegel RA, Langer R. Controlled release of polypeptides and other macromolecules. Pharm Res 1984;1:2-10
  • Kaewvichit S, Tucker IG. The release of macromolecules from fatty acid matrices: Complete factorial study of factors affecting release. J Pharm Pharmacol 1994;46:708-13
  • Koennings S, Tessmar J, Blunk T, Goepferich A. Confocal microscopy for the elucidation of mass transport mechanisms involved in protein release from lipid-based matrices. Pharm Res 2007;24(7):1325-35
  • Guse C, Koennings S, Blunk T, et al. Programmable implants – from pulsatile to controlled release. Int J Pharm 2006;314(2):161-9
  • Knepp VM, Muchnik A, Oldmark S, Kalashnikova L. Stability of nonaqueous suspension formulations of plasma derived factor IX and recombinant human alpha interferon at elevated temperatures. Pharm Res 1998;15(7):1090-5
  • Klibanov AM. Improving enzymes by using them in organic solvents. Nature 2001;409:241-6
  • Maschke A, Becker C, Eyrich D, et al. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm 2007;65:175-87
  • Eldem T, Speiser P, Altorfer H. Polymorphic behavior of sprayed lipid micropellets and its evaluation by differential scanning calorimetry and scanning electron microscopy. Pharm Res 1991;8(2):178-84
  • Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Rel 1997;48:223-36
  • San Vicente A, Hernandez RM, Gascon AR, et al. Effect of aging on the release of salbutamol sulfate from lipid matrices. Int J Pharm 2000;208:13-21
  • Hamdani J, Moes AJ, Amighi K. Physical and thermal characterization of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets. Int J Pharm 2003;260:47-57
  • Khan N, Craig DQM. Role of blooming in determining the storage stability of lipid-based dosage forms. J Pharm Sci 2004;93(12):2962-71
  • Choy YW, Khan N, Yuen KH. Significance of lipid matrix aging on in vitro release and in vivo bioavailability. Int J Pharm 2005;,299:55-64
  • Chapman D. The polymorphism of glycerides. Chem Rev 1962;62:433-56
  • Larsson K. Classification of glyceride crystal forms. Acta Chem Scand 1966;20:2255-60
  • Hagemann JW. Thermal behavior and polymorphism of acylglycerides. In: Crystallization and Polymorphism of Fats and Fatty Acids. Garti N, Sato K, editors. Marcel Dekker, New York; 1988. p. 9-97
  • Sutananta W, Craig DQM, Newton JM. An investigation into the effect of preparation conditions on the structure and mechanical properties of pharmaceutical glyceride bases. Int J Pharm 1994;110:75-91
  • Van Langevelde A, Van Malssen K, Hollander F, et al. Structure of mono-acid even-numbered β-triacylglycerols. Acta Cryst 1999;B55:114-22
  • Sato K, Ueno S, Yano J. Molecular interactions and kinetic properties of fats. Prog Lipid Res 1999;38:91-116
  • Sato K. Crystallization behaviour of fats and lipids – a review. Chem Eng Sci 2001;56:2255-65
  • Khan N, Craig DQM. The influence of drug incorporation on the structure and release properties of solid dispersions in lipid matrices. J Control Rel 2003;93:355-68
  • Himawan C, Starov VM, Stapley AGF. Thermodynamic and kinetic aspects of fat crystallization. Adv Colloid Interface Sci 2006;122:3-33
  • Liu J, Zhang F, McGinity JW. Properties of lipophilic matrix tablets containing phenylpropranolamine hydrochloride prepared by hot-melt extrusion. Eur J Pharm Biopharm 2001;52:181-90
  • Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 2002;54:107-17
  • Verreck G, Brewster ME. Melt extrusion-based dosage forms: excipients and processing conditions for pharmaceutical formulations. B T Gattefossé 2004;97:85-95
  • Miyagawa Y, Okabe T, Yamaguchi Y, et al. Controlled-release of diclofenac sodium from wax matrix granule. Int J Pharm 1996;138:215-24
  • Sato H, Miyagawa Y, Okabe T, et al. Dissolution mechanism of diclofenac sodium from wax matrix granules. J Pharm Sci 1997;86(8):929-34
  • Reitz C, Kleinebudde P. Solid lipid extrusion of sustained release dosage forms. Eur J Pharm Biopharm 2007;67(2):440-8
  • Vergnaud JM. Controlled Drug Release of Oral Dosage Forms. Ellis Horwood Limited, Chichester; 1993
  • Guse C, Koennings S, Maschke A, et al. Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids. Int J Pharm 2006;314:153-60
  • Walduck AK, Opdebeeck JP, Benson HE, Prankerd R. Biodegradable implants for the delivery of veterinary vaccines: design, manufacture and antibody responses in sheep. J Control Rel 1998;51:269-80
  • Reithmeier H, Herrmann J, Goepferich A. Lipid microparticles as a parenteral controlled release device for peptides. J Control Rel 2001;73:339-50
  • Allababidi S, Shah JC. Efficacy and pharmacokinetics of site-specific cefazolin delivery using biodegradable implants in the prevention of post-operative wound infections. Pharm Res 1998;15(2):325-33
  • Sullivan MF, Ruemmler PS, Kalkwarf DR. Sustained administration of cyclazocine for antagonism of morphine. Drug Alcohol Depend 1976;1:415-28
  • Joseph AA, Hill JL, Patel J, et al. Sustained-release hormonal preparations XV: release of progesterone from cholesterol pellets in vivo. J Pharm Sci 1977;66(4):490-93
  • Wang PY. Prolonged release of insulin by cholesterol-matrix implant. Diabetes 1987;36(9):1068-72
  • Wang PY. Palmitic acid as an excipient in implants for sustained release of insulin. Biomaterials 1991;12(1):57-62
  • Khan MZI, Tucker IG, Opdebeeck JP. Cholesterol and lecithin implants for sustained release of antigen: release and erosion in vitro, and antibody response in mice. Int J Pharm 1991;76:161-70
  • Khan MZI, Tucker IG, Opdebeeck JP. Evaluation of cholesterol–lecithin implants for sustained delivery of antigen: release in vivo and single-step immunisation of mice. Int J Pharm 1993;90:255-62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.