433
Views
138
CrossRef citations to date
0
Altmetric
Review

Opportunities and challenges of carbon-based nanomaterials for cancer therapy

, &
Pages 331-342 | Published online: 05 Mar 2008

Bibliography

  • Bacon R. Growth, structure, and properties of graphite whiskers. J Appl Phys 1960;31:284-90
  • Oberlin A, Endo M, Koyama T. Filamentous growth of carbon though benzene decomposition. J Cryst Growth 1976;32:335-49
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-8
  • Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nanohorns. Chem Phys Lett 1999;309:165-70
  • Ferro S. Synthesis of diamond. J Mater Chem 2002;12:2843-55
  • Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2003;2:29-37
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303:1818-22
  • Lavan DA, Mcguire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003;21:1184-91
  • Lavan DA, Lynn DM, Langer R. Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 2002;1:77-84
  • Langer R. Drug delivery and targeting. Nature 1998;392(Suppl):5-10
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2:347-60
  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expt Opin Biol Ther 2004;4:35-51
  • Boas U, Heegaard PM. Dendrimers in drug research. Chem Soc Rev 2004;33:43-63
  • Kostarelos K. Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Coll Inter Sci 2003;106:147-68
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature Rev Cancer 2005;5:161-71
  • Emerich DF, Thanos CG. Nanotechnology and medicine. Expt Opin Biol Ther 2003;3:1-9
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993;363:603-5
  • Bethune DS, Klang CH, de Vries MS, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993;363:605-7
  • Special issue on Carbon Nanotubes. Acc Chem Res 2002;35:997-1113
  • Dresselhaus MS, Dresselhaus G, Avouris P. Carbon nanotubes: synthesis, properties and applications. Berlin: Springer-Velag; 2001
  • Journet C, Maser WK, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997;388:756-8
  • Rinzler AG, Liu J, Dai H, et al. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A 1998;67:29-37
  • Endo M, Takeuchi K, Kobori K, et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 1995;33:873-81
  • Nikolaev P, Bronikowski M, Bradley RK, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 1999;313:91-7
  • Rao CNR, Satishkumar B, Govindaraj A, Nath M. Nanotubes. Chem Phys Chem 2001;2:78-105
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674-9
  • Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 2006;1758:404-12
  • Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 2006;58:1460-70
  • Lin Y, Taylor S, Li HP, et al. Advances toward bioapplications of carbon nanotubes. J Mater Chem 2004;14:527-41
  • Kam NWS, Dai H. Single walled carbon nanotubes for transport and delivery of biological cargos. Phys Stat Sol B 2006;243:3561-6
  • Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membrane by carbon nanotubes. Chem Commun 2004:16-7
  • Pantarotto D, Singh R, McCarthy D, et al. Functionalised carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 2004;43:5242-6
  • Kam NWS, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004;126:6850-1
  • Kostarelos K, Lacerda L, Pastorin G, et al. Functionalised carbon nanotube cellular uptake and internalisation mechanism is independent of functional group and cell type. Nat Nanotech 2007;2:108-13
  • Kam NSW, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 2006;45:577-81
  • Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev 2006;106:1105-36
  • Bachilo SM, Strano MS, Kittrell C, et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002;298:2361-6
  • Kam NWS, O'Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005;102:11600-5
  • Shao N, Lu S, Wickstrom E, Panchapakesan B. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology 2007;18:315101
  • Ehli C, Rahman GMA, Jux N, et al. Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc 2006;128:11222-31
  • Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 2001;123:3838-9
  • Gannon CJ, Cherukuri P, Yakobson BI, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007;111:2654-65
  • Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 2006;103:3357-62
  • Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 2006;103:18882-6
  • McDevitt MR, Chattopadhyay D, Jaggi JS, et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE 2007;2:e907
  • Guo J, Zhang X, Li Q, Li W. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 2007;34:579-83
  • Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech 2007;1:47-52
  • McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumour targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007;48:1180-9
  • Wang H, Wang J, Deng X, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 2004;4:1019-24
  • Lacerda L, Soundararajan A, Singh R, et al. Dynamic imaging of functionalised multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mater 2008;20:225-30
  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007;1:50-6
  • Ali-Boucetta H, Al-Jamal K, McCarthy D, et al. Multi-walled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 2008;459-61
  • Zhang Z, Yang X, Zhang Y, et al. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumour growth. Clin Cancer Res 2006;12:4933-9
  • Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 2007;129:8438-9
  • Wong E, Giandomenico CM. Current status of platinum-based antitumour drugs. Chem Rev 1999;99:2451-66
  • Wong JM, Esdaile JM. Methotrexate in systemic lupus erythematosus. Lupus 2005;14:101-5
  • Pignatello R, Guccione S, Forte S, et al. Lipophilic conjugates of methotrexate with short-chain alkylamino acids as DHFR inhibitors. Synthesis, biological evaluation, and molecular modeling. Bioorg Med Chem 2004;12:2951-64
  • Pastorin G, Wu W, Wieckowski S, et al. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 2006;1182-4
  • Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008;41:60-8
  • Yinghuai Z, Peng AT, Carpenter K, et al. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J Am Chem Soc 2005;127:9875-80
  • Yu BZ, Yang JS, Li WX. In vitro capability of multi-walled carbon nanotube modified with gonadotrophin releasing hormone on killing cancer cells. Carbon 2007;45:1921-7
  • Reilly RM. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med 2007;48:1139-42
  • Shiba K. Functionalization of carbon nanomaterials by evolutionary molecular engineering: potential application in drug delivery systems. J Drug Target 2006;14:512-8
  • Yudasaka M, Fan J, Miyawaki J, Iijima S. Studies on the adsorption of organic materials inside thick carbon nanotubes. J Phys Chem B 2005;109:8909-13
  • Murakami T, Fan J, Yudasaka M, et al. Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol Pharm 2006;3:407-14
  • Ajima K, Yudasaka M, Murakami T, et al. Carbon nanohorns as anticancer drug carriers. Mol Pharm 2005;2:475-80
  • Matsumura S, Ajima K, Yudasaka M, et al. Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol Pharm 2007;4:723-9
  • Ajima K, Yudasaka M, Maigne A, et al. Effect of functional groups at hole edges on cisplatin release from inside single-wall carbon nanohorns. J Phys Chem B 2006;110:5773-8
  • Ajima K, Maigne A, Yudasaka M, Iijima S. Optimum hole-opening condition for Cisplatin incorporation in single-wall carbon nanohorns and its release. J Phys Chem B 2006;110:19097-9
  • Isobe H, Tanaka T, Maeda R, et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew Chem Int Ed 2006;45:6676-80
  • Miyawaki J, Yudasaka M, Imai H, et al. In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles. Adv Mater 2006;18:1010-4
  • Schreiner PR, Fokina NA, Tkachenko BA, et al. Functionalized nanodiamonds: triamantane and [121]tetramantane. J Org Chem 2006;71:6709-20
  • Fokin AA, Tkachenko BA, Gunchenko PA, et al. Functionalized nanodiamonds part I. An experimental assessment of diamantane and computational predictions for higher diamondoids. Chem Eur J 2005;11:7091-101
  • Liu Y, Gu Z, Margrave JL, Khabashesku VN. Functionalization of nanoscale diamond powder: fluore-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Mater Chem 2004;16:3924-30
  • Huang LCL, Chang HC. Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 2004;20:5879-84
  • Huang H, Pierstorff E, Osawa E, Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 2007;7:3305-14
  • Fu CC, Lee HY, Chen K, et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 2007;104:727-32
  • Yu SJ, Kang MW, Chang HC, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 2005;127:17604-5
  • Schrand AM, Huang H, Carlson C, et al. Are diamond nanoparticles cytotoxic? J Phys Chem B 2007;111:2-7
  • Boczkowski J, Lanone S. Potential uses of carbon nanotubes in the medical field: how worried should patients be? Nanomedicine 2007;2:407-10
  • Helland A, Wick P, Koehler A, et al. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 2007;115:1125-31
  • Tsuji JS, Maynard AD, Howard PC, et al. Research strategies for safety evaluation of nanomaterials, part IV: Risk assessment of nanoparticles. Toxicol Sci 2006;89:42-50
  • Liu J, Rinzler AG, Dai H, et al. Fullerene pipes. Science 1998;280:1253-6
  • Duesberg GS, Burghard M, Muster J, et al. Separation of carbon nanotubes by size exclusion chromatography. Chem Commun 1998;435-6
  • Yu A, Bekyarova E, Itkis ME, et al. Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. J Am Chem Soc 2006;128:9902-8
  • Doorn SK, Fields RE 3rd, Hu H, et al. High resolution capillary electrophoresis of carbon nanotubes. J Am Chem Soc 2002;124:3169-74
  • Niyogi S, Hu H, Hamon MA, et al. Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTS). J Am Chem Soc 2001;123:733-4
  • Zhao B, Hu H, Niyogi S, et al. Chromatographic purification and properties of soluble single-walled carbon nanotubes. J Am Chem Soc 2001;123:11673-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.