323
Views
56
CrossRef citations to date
0
Altmetric
Review

Developments in polymeric devices for oral insulin delivery

, , , &
Pages 403-415 | Published online: 21 Apr 2008

Bibliography

  • Foster DW. Diabetes mellitus. In: Fauci AS, Braunwald E, Isselbacher KJ, et al, editors, Harrison's principles of internal medicine. 14th edition. McGraw-Hill, New York; 1998. p. 2060-80
  • Kahn CR, Shechter Y. Insulin, oral hypoglycemic agents, and the pharmacology of the endocrine pancreas. In: Gilman AG, Rall TW, Nies AS, Taylor P, edititors, The pharmacological basis of therapeutics. 8th edition. Pergamon Press, New York; 1991. p. 1463-95
  • Kudva YC, Basu A, Jenkins GD, et al. Randomized controlled clinical trial of glargine versus ultralente insulin in the treatment of type 1 diabetes. Diabetes Care 2005;28:10-4
  • Varshosaz J. Insulin delivery systems for controlling diabetes, recent patents on endocrine. Metab Immune Drug Discov 2007;1:25-40
  • Carino GP, Mathiowit E. Oral insulin delivery. Adv Drug Deliv Rev 1999;35:249-57
  • Packhaeuser CB, Kissel T. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles. J Control Rel 2007;123:131-40
  • Graf A, Ablinger E, Peters S, et al. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides. Inter J Pharm 2008;350(1-2):351-60
  • Damge C, Michel C, Aprahamian M, Couvreur P. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 1988;37:246-51
  • Damge C, Vranckx H, Balschmidt P, Couvreur P. Poly(alkylcyanoacrylate) nanospheres for oral administration of insulin. J Pharm Sci 1997;86:1403-9
  • Radwant MA, Enein Hya. The effect of oral absorption enhancers on the in vivo performance of insulin-loaded poly(ethylcyanoacrylate) nanospheres in diabetic rats. J Microencapsul 2002;19:225-35
  • Schwendeman SP, Cardamone M, Brandon MP, et al. Stability of proteins and their delivery from biodegradable polymer microspheres. In: Cohen S, Bernstein H, editors, Microparticulate systems for the delivery of proteins and vaccines. Marcel Dekker, New York; 1996. p. 1-50
  • Lucke. A, Kiermaier J, Pferich AG. Peptide acylation by poly (α-hydroxy esters). Pharm Res 2002;19:175-81
  • Na DH, Youn YS, Lee SD, et al. Monitoring of peptide acylation inside degrading PLGA microspheres by capillary electrophoresis and MALDI-TOF mass spectrometry. J Control Rel 2003;92:291-9
  • Brunner A, Mader K, Pferich AG. pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm Res 1999;16:847-53
  • Krauland AH, Guggi D, Schnurch AB. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. J Control Rel 2004;95:547-55
  • Krauland AH, Schnurch AB. Thiomers: development and in vitro evaluation of a peroral microparticulate peptide delivery system. Eur J Pharm Biopharm 2004;57:181-7
  • Takeuchi H, Yamamoto H, Niwa T, et al. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res 1996;13:896-901
  • Ramadas M, Paul W, Dileep KJ, et al. Lipoinsulin encapsulated alginate-chitosan capsules: intestinal delivery in diabetic rats. J Microencapsul 2000;17:405-11
  • Pan Y, Li YJ, Zhao HY, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002;249:139-47
  • Xiong XY, Li YP, Li ZL, et al. Vesicles from pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J Control Rel 2007;120:11-7
  • Xiong XY, Tam KC, Gan LH. Synthesis and aggregation behavior of pluronic F127/poly(lactic acid) block copolymers in aqueous solutions. Macromolecules 2003;36:9979-85
  • Xiong XY, Tam KC, Gan LH. Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly(lactic acid) nanoparticles. J Control Rel 2005;103:73-82
  • Xiong XY, Tam KC, Gan LH. Effect of enzymatic degradation on the release kinetics of model drug from Pluronic F127/poly(lactic acid) nanoparticles. J Control Rel 2005;108:263-70
  • Lueben HL, Bohner V, Perard D, et al. Mucoadhesive polymers in peroral peptide drug delivery. V. Effect of poly(acrylates) on the enzymatic degradation of peptide drugs by intestinal brush border membrane vesicles. Int J Pharm 1996;141:39-52
  • Kim SW, Bae YH, Okano T. Hydrogels: swelling, drug loading, and release. Pharm Res 1992;9:283-90
  • Soppimath KS, Aminabhavi TM, Dave AM, et al. Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 2002;28:957-74
  • Morishita M, Lowman AM, Takayama K, et al. Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J Control Rel 2002;81:25-32
  • Ranjha NM, Doelker E. pH-sensitive hydrogels for site-specific drug delivery. I. Swelling behaviour of crosslinked copolymers of acrylic and methacrylic acid. STP Pharma 1999;9:335-40
  • Lowman AM, Peppas NA. Design of oral delivery systems for peptides and proteins using complexation graft copolymer networks. In: Peppas NA, Mooney DJ, Mikos AG, Peppas LB, editors, Biomaterials carriers for drug delivery and scaffolds for tissue engineering. AlChE, New York; 1997. p. 21-3
  • Lowman AM, Morishita M, Kajita M, et al. Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci 1999;88:933-7
  • Madsen F, Peppas NA. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition. Biomaterials 1999;20:1701-8
  • Bai JP, Chang LL, Guo JH. Effect of polyacrylic polymers on the lumenal proteolysis of peptide drugs in the colon. J Pharm Sci 1995;84:1291-4
  • Lueben HL, Bochard G, Verhoef JC, et al. Mucoadhesive polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm Res 1995;12:1293-8
  • Morishita M, Goto T, Nakamura K, et al. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J Control Rel 2006;110:587-94
  • Lowman AM, Peppas NA. Analysis of the complexation/decomplexation phenomena in polyelectrolyte networks. Macromolecules 1997;30:4959-65
  • Nakamura K, MurraY RJ, Joseph JI, et al. Oral insulin delivery using P(MAA-g.-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Rel 2004;95:589-99
  • Aragoa MA, Ponchel G, Orecchioni AM, et al. Bioadhesive potential of gliadin nanoparticle systems. Eur J Pharm Sci 2000;11:333-41
  • Morishita M, Goto T, Peppas NA, et al. Mucosal insulin delivery systems based on complexation polymerhydrogels: effect of particle size on insulin parenteral absorption. J Control Rel 2004;97:115-24
  • Foss AC, Goto T, Morishita M, Peppas NA. Development of acrylic-based copolymers for oral insulin delivery. Eur J Pharm Biopharm 2004;57:163-9
  • Chandy T, Sharma CP. Chitosan as a biomaterial. Biomater Art Cell Art Org 1990;18:1-24
  • Rao SB, Sharma CP. Use of chitosan as a biomaterial: Studies on its safety and haemostatic potential. J Biomater Mater Res 1997;34:21-8
  • Smith J, Wood E, Dornish M. Effect of chitosan on epithelial cell tight junctions. Pharm Res 2004;21:43-9
  • Schipper NG, Olsson S, Hoogstraate JA, et al. Chitosan as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res 1997;14:923-9
  • Hari PR, Chandy T, Sharma CP. Chitosan/calcium alginate beads for oral delivery of insulin. J Appl Polym Sci 1996;59:1795-801
  • Yoshioka H, Hirano R, Shioya T, Kako M. Encapsulation of mammalian cells with chitosan-carboxy methylcellulose capsules. Biotechnol Bioeng 1990;35:66-72
  • Du J, Zhang S, Sun R, et al. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. II. Release of albumin in vitro. J Biomed Mater Res B Appl Biomater 2005;72B:299-304
  • Hu Y, Jiang X, DingY, et al. Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials 2002;23:3193-201
  • Sajeesh S, Sharma CP. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res B Appl Biomater 2006;76B:298-305
  • Sajeesh S, Sharma CP. Interpolymer complex microparticles based on polymethacrylic acid-chitosan for oral insulin delivery. J Appl Polym Sci 2006;99:506-12
  • Michael H, Skovby B, Kops J. Preparation by suspension polymerization of porous beads for enzyme immobilization. J Appl Polym Sci 1990;39:169-77
  • Kriwet B, Walter E, Kissel T. Synthesis of bioadhesive poly(acrylic acid) nano and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates. J Control Rel 1998;56:149-58
  • Cui F, Shi K, Zhang L, et al. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Rel 2006;114:242-50
  • Xiong XY, Tam KC, Gan LH. Hydrolytic degradation of Pluronic F127/poly(lactic acid) block copolymer nanoparticles. Macromolecules 2004;37:3425-30
  • Gebhart CL, Sriadibhatla S, Vinogradov S, et al. Design and formulation of polyplexes based on pluronic–polyethyleneimine conjugates for gene transfer. Bioconjug Chem 2002;13:937-44
  • Iwanaga K, Ono S, Narioka K, et al. Application of surface coated liposomes for oral delivery of peptide: effects of coating the liposome's surface on the GI transit of insulin. J Pharm Sci 1999;88:248-52
  • Ibrahim MA, Fetouhb AI MI, Pferich AG. Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres. J Control Rel 2005;106:241-52
  • Cheng K, Lim LY. Insulin-loaded calcium pectinate nanoparticles: effects of pectin molecular weight and formulation pH. Drug Dev Ind Pharm 2004;30:359-67
  • Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Rel 2007;117:163-70
  • Martins S, Sarmento B, Souto EB, Ferreira DC. Insulin-loaded alginate microspheres for oral delivery – effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr Polym 2007;69:725-31
  • Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin: Design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci 2007;30:392-7
  • Chalasani KB, Jones GJR, Jain AK, et al. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Rel 2007;122:141-50
  • Chalasani KB, Jones GJR, Yandrapu SK, et al. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Rel 2007;117:421-9
  • Jones GJR. Use of targeting agents to increase uptake and localization of drugs to the intestinal epithelium. J Drug Target 2004;12:113-23
  • Kennedy FP. Recent developments in insulin delivery techniques: current status and future potential. Drugs 1991;42:213-27
  • Marble A, Krall LP, Brandley RE, et al. Diabetes Mellitus. 12th edition. Lea and Febiger, Philadelphia
  • Stella VJ, Rajewski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res 1997;14:556-67
  • Lovatt M, Cooper A, Camilleri P. Energetics of cyclodextrin-induced dissociation of insulin. Eur Biophys J 1996;24:354-7
  • Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deliv Rev 1999;36:101-23
  • Osterberg O, Ericson L, Ingwersen SH, et al. Pharmacokinetic and pharmacodynamic properties of insulin aspart and human insulin. J Pharmacokinet Pharmacodyn 2003;30:221-35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.