333
Views
13
CrossRef citations to date
0
Altmetric
Review

Drug delivery in acute myeloid leukemia

, Dipl. Mol. Med., , Dipl. Biol. & , MD PhD
Pages 653-663 | Published online: 05 Jun 2008

Bibliography

  • Estey EH. Therapeutic options for acute myelogenous leukemia. Cancer 2001;92(5):1059-73
  • Olesen LH, Aggerholm A, Andersen BL, et al. Molecular typing of adult acute myeloid leukaemia: significance of translocations, tandem duplications, methylation, and selective gene expression profiling. Br J Haematol 2005;131(4):457-67
  • Stone RM, O'Donnell MR, Sekeres MA. Acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2004:98-117
  • Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood 2005;106(4):1154-63
  • Appelbaum FR, Rowe JM, Radich J, Dick JE. Acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2001:62-86
  • Baudard M, Beauchamp-Nicoud A, Delmer A, et al. Has the prognosis of adult patients with acute myeloid leukemia improved over years? A single institution experience of 784 consecutive patients over a 16-year period. Leukemia 1999;13(10):1481-90
  • Dimarco A, Gaetani M, Dorigotti L, et al. Daunomycin: a new antibiotic with antitumor activity. Cancer Chemother Rep 1964;38:31-8
  • Capranico G, Butelli E, Zunino F. Change of the sequence specificity of daunorubicin-stimulated topoisomerase II DNA cleavage by epimerization of the amino group of the sugar moiety. Cancer Res 1995;55(2):312-7
  • Vogler WR, Velez-Garcia E, Weiner RS, et al. A Phase III trial comparing idarubicin and daunorubicin in combination with cytarabine in acute myelogenous leukemia: a Southeastern Cancer Study Group Study. J Clin Oncol 1992;10(7):1103-11
  • Arlin Z, Case DC Jr, Moore J, et al. Randomized multicenter trial of cytosine arabinoside with mitoxantrone or daunorubicin in previously untreated adult patients with acute nonlymphocytic leukemia (ANLL). Lederle Cooperative Group. Leukemia 1990;4(3):177-83
  • Buchner T, Hiddemann W, Wormann B, et al. Double induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6-thioguanine: a randomized trial by the German AML Cooperative Group. Blood 1999;93(12):4116-24
  • Schiller G, Gajewski J, Nimer S, et al. A randomized study of intermediate versus conventional-dose cytarabine as intensive induction for acute myelogenous leukaemia. Br J Haematol 1992;81(2):170-7
  • Phillips GL, Reece DE, Shepherd JD, et al. High-dose cytarabine and daunorubicin induction and postremission chemotherapy for the treatment of acute myelogenous leukemia in adults. Blood 1991;77(7):1429-35
  • Bishop JF. The treatment of adult acute myeloid leukemia. Semin Oncol 1997;24(1):57-69
  • Burnett AK. The treatment of AML: current status and novel approaches. Hematology (Amsterdam, Netherlands) 2005;10(Suppl 1):50-3
  • Karp JE, Lancet JE, Kaufmann SH, et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 2001;97(11):3361-9
  • Kosugi H, Towatari M, Hatano S, et al. Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 1999;13(9):1316-24
  • Yu C, Rahmani M, Conrad D, et al. The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 2003;102(10):3765-74
  • Karp JE, Gojo I, Pili R, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-D-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 2004;10(11):3577-85
  • Gregoriadis G, Wills EJ, Swain CP, Tavill AS. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1974;1(7870):1313-6
  • Forssen EA, Coulter DM, Proffitt RT. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res 1992;52(12):3255-61
  • Pea F, Russo D, Michieli M, et al. Liposomal daunorubicin plasmatic and renal disposition in patients with acute leukemia. Cancer Chemother Pharmacol 2000;46(4):279-86
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Fassas A, Anagnostopoulos A. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma 2005;46(6):795-802
  • Thierry AR, Vige D, Coughlin SS, et al. Modulation of doxorubicin resistance in multidrug-resistant cells by liposomes. FASEB J 1993;7(6):572-9
  • Michieli M, Damiani D, Ermacora A, et al. Liposome-encapsulated daunorubicin for PGP-related multidrug resistance. Br J Haematol 1999;106(1):92-9
  • Cortes J, Estey E, O'Brien S, et al. High-dose liposomal daunorubicin and high-dose cytarabine combination in patients with refractory or relapsed acute myelogenous leukemia. Cancer 2001;92(1):7-14
  • Fassas A, Buffels R, Anagnostopoulos A, et al. Safety and early efficacy assessment of liposomal daunorubicin (DaunoXome) in adults with refractory or relapsed acute myeloblastic leukaemia: a Phase I – II study. Br J Haematol 2002;116(2):308-15
  • Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;5(3):309-19
  • Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994;269(5):3198-204
  • Ross JF, Wang H, Behm FG, et al. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer 1999;85(2):348-57
  • Lu Y, Wu J, Wu J, et al. Role of formulation composition in folate receptor-targeted liposomal doxorubicin delivery to acute myelogenous leukemia cells. Mol Pharm 2007;4(5):707-12
  • Wang H, Zheng X, Behm FG, Ratnam M. Differentiation-independent retinoid induction of folate receptor type beta, a potential tumor target in myeloid leukemia. Blood 2000;96(10):3529-36
  • Chen H, MacDonald RC, Li S, et al. Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release. J Am. Chem Soc 2006;128(41):13348-9
  • Cheong I, Huang X, Thornton K, et al. Targeting cancer with bugs and liposomes: ready, aim, fire. Cancer Res 2007;67(20):9605-8
  • Neubauer A, Dodge RK, George SL, et al. Prognostic importance of mutations in the RAS proto-oncogenes in de novo acute myeloid leukemia. Blood 1994;83(6):1603-11
  • Johnston SR. Farnesyl transferase inhibitors: a novel targeted therapy for cancer. Lancet Oncol 2001;2(1):18-26
  • Armand JP, Burnett AK, Drach J, et al. The emerging role of targeted therapy for hematologic malignancies: update on bortezomib and tipifarnib. Oncologist 2007;12(3):281-90
  • Stone RM. Novel therapeutic agents in acute myeloid leukemia. Exp Hematol 2007;35(4 Suppl 1):163-6
  • Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996;10(12):1911-8
  • Kottaridis PD, Gale RE, Linch DC. Flt3 mutations and leukaemia. Br J Haematol 2003;122(4):523-38
  • Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103(10):3669-76
  • Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005;105(1):54-60
  • Knapper S, Burnett AK, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006;108(10):3262-70
  • Zhang S, Zannikos P, Awada A, et al. Pharmacokinetics of tipifarnib after oral and intravenous administration in subjects with advanced cancer. J Clin Pharmacol 2006;46(10):1116-27
  • Auclair D, Miller D, Yatsula V, et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 2007;21(3):439-45
  • Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 2007;7(5):332-44
  • Pagano L, Fianchi L, Caira M, et al. The role of Gemtuzumab Ozogamicin in the treatment of acute myeloid leukemia patients. Oncogene 2007;26(25):3679-90
  • Lajaunias F, Dayer JM, Chizzolini C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur J Immunol 2005;35(1):243-51
  • van Der Velden VH, te Marvelde JG, Hoogeveen PG, et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 2001;97(10):3197-204
  • Walter RB, Gooley TA, van der Velden VH, et al. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood 2007;109(10):4168-70
  • Leone G, Rutella S, Voso MT, et al. in vivo priming with granulocyte colony-stimulating factor possibly enhances the effect of gemtuzumab-ozogamicin in acute myeloid leukemia: results of a pilot study. Haematologica 2004;89(5):634-6
  • Naito K, Takeshita A, Shigeno K, et al. Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 2000;14(8):1436-43
  • Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001;19(13):3244-54
  • Williams JP, Handler HL. Antibody-targeted chemotherapy for the treatment of relapsed acute myeloid leukemia. Am J Manag Care 2000;6(18 Suppl):S975-85
  • Burnett AK, Knapper S. Targeting treatment in AML. Hematology Am Soc Hematol Educ Program 2007;2007:429-34
  • Stadtmauer EA. Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Curr Oncol Rep 2002;4(5):375-80
  • Vitale C, Romagnani C, Falco M, et al. Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proc Natl Acad Sci USA 1999;96(26):15091-6
  • Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol 2005;23(18):4110-6
  • Williams B, Atkins A, Zhang H, et al. Cell-based selection of internalizing fully human antagonistic antibodies directed against FLT3 for suppression of leukemia cell growth. Leukemia 2005;19(8):1432-8
  • Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004;350(16):1605-16
  • Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004;350(16):1617-28
  • Bakker AB, van den Oudenrijn S, Bakker AQ, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res 2004;64(22):8443-50
  • van Rhenen A, van Dongen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 2007;110(7):2659-66
  • Kolonin MG, Bover L, Sun J, et al. Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries. Cancer Res 2006;66(1):34-40
  • Trepel M, Arap W, Pasqualini R. in vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 2002;6(3):399-404
  • Ellerby HM, Arap W, Ellerby LM, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 1999;5(9):1032-8
  • Arap W, Pasqualini R, Ruoslahti E. Chemotherapy targeted to tumor vasculature. Curr Opin Oncol 1998;10(6):560-5
  • Arap W, Haedicke W, Bernasconi M, et al. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA 2002;99(3):1527-31
  • Kolonin MG, Saha PK, Chan L, et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med 2004;10(6):625-32
  • Trepel M, Arap W, Pasqualini R. Modulation of the immune response by systemic targeting of antigens to lymph nodes. Cancer Res 2001;61(22):8110-2
  • Binder M, Otto F, Mertelsmann R, et al. The epitope recognized by rituximab. Blood 2006;108(6):1975-8
  • Binder M, Vogtle FN, Michelfelder S, et al. Identification of their epitope reveals the structural basis for the mechanism of action of the immunosuppressive antibodies basiliximab and daclizumab. Cancer Res 2007;67(8):3518-23
  • Mintz PJ, Kim J, Do KA, et al. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 2003;21(1):57-63
  • Vidal CI, Mintz PJ, Lu K, et al. An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene 2004;23(55):8859-67
  • Jäger S, Jahnke A, Wilmes T, et al. Leukemia-targeting ligands isolated from phage-display peptide libraries. Leukemia 2007;21(3):411-20
  • Matsunaga T, Takemoto N, Sato T, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003;9(9):1158-65
  • Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004;5(7):738-43
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730-7
  • Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367(6464):645-8
  • Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000;14(10):1777-84
  • Feuring-Buske M, Frankel AE, Alexander RL, et al. A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res 2002;62(6):1730-6
  • Hogge DE, Yalcintepe L, Wong SH, et al. Variant diphtheria toxin-interleukin-3 fusion proteins with increased receptor affinity have enhanced cytotoxicity against acute myeloid leukemia progenitors. Clin Cancer Res 2006;12(4):1284-91
  • Black JH, McCubrey JA, Willingham MC, et al. Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 2003;17(1):155-9
  • Frankel A, Liu JS, Rizzieri D, Hogge D. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma 2008;49(3):543-53
  • Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006;12(10):1167-74
  • Einhorn S, Strander H. Interferon treatment of human malignancies – a short review. Med Oncol Tumor Pharmacother 1993;10(1-2):25-9
  • Schmidt-Wolf GD, Schmidt-Wolf IG. Cytokines and gene therapy. Immunology Today 1995;16(4):173-5
  • Finke S, Trojaneck B, Lefterova P, et al. Increase of proliferation rate and enhancement of antitumor cytotoxicity of expanded human CD3+ CD56+ immunologic effector cells by receptor-mediated transfection with the interleukin-7 gene. Gene Ther 1998;5(1):31-9
  • Notter M, Willinger T, Erben U, Thiel E. Targeting of a B7-1 (CD80) immunoglobulin G fusion protein to acute myeloid leukemia blasts increases their costimulatory activity for autologous remission T cells. Blood 2001;97(10):3138-45
  • Kato K, Cantwell MJ, Sharma S, Kipps TJ. Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Invest 1998;101(5):1133-41
  • Stripecke R, Koya RC, Ta HQ, et al. The use of lentiviral vectors in gene therapy of leukemia: combinatorial gene delivery of immunomodulators into leukemia cells by state-of-the-art vectors. Blood Cells Mol Dis 2003;31(1):28-37
  • Borden EC, Hogan TF, Voelkel JG. Comparative antiproliferative activity in vitro of natural interferons alpha and beta for diploid and transformed human cells. Cancer Res 1982;42(12):4948-53
  • Schakowski F, Buttgereit P, Mazur M, et al. Novel non-viral method for transfection of primary leukemia cells and cell lines. Genet Vaccines Ther 2004;2(1):1
  • Roddie PH, Paterson T, Turner ML. Gene transfer to primary acute myeloid leukaemia blasts and myeloid leukaemia cell lines. Cytokines Cell Mol Ther 2000;6(3):127-34
  • Carter BJ. Adeno-associated virus vectors in clinical trials. Hum Gene Ther 2005;16(5):541-50
  • Coura Rdos S, Nardi NB. The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 2007;4:99
  • Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 2004;11(Suppl 1):S10-7
  • Trepel M, Arap W, Pasqualini R. Exploring vascular heterogeneity for gene therapy targeting. Gene Ther 2000;7(24):2059-60
  • Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006;14(3):316-27
  • Grifman M, Trepel M, Speece P, et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 2001;3(6):964-75
  • Nicklin SA, Buening H, Dishart KL, et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 2001;4(3):174-81
  • White SJ, Nicklin SA, Buning H, et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 2004;109(4):513-9
  • Loiler SA, Conlon TJ, Song S, et al. Targeting recombinant adeno-associated virus vectors to enhance gene transfer to pancreatic islets and liver. Gene Ther 2003;10(18):1551-8
  • Shi WF, Bartlett JS. RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol Ther 2003;7(4):515-25
  • Reynolds P, Dmitriev I, Curiel D. Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Ther 1999;6(7):1336-9
  • Müller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003;21(9):1040-6
  • Perabo L, Buning H, Kofler DM, et al. In vitro selection of viral vectors with modified tropism: The adeno-associated virus display. Mol Ther 2003;8(1):151-7
  • Bupp K, Roth MJ. Targeting a retroviral vector in the absence of a known cell-targeting ligand. Human Gene Ther 2003;14(16):1557-64
  • Hartl I, Schneider RM, Sun Y, et al. Library-based selection of retroviruses selectively spreading through matrix metalloprotease-positive cells. Gene Ther 2005;12(11):918-26
  • Khare PD, Rosales AG, Bailey KR, et al. Epitope selection from an uncensored peptide library displayed on avian leukosis virus. Virology 2003;315(2):313-21
  • Khare PD, Russell SJ, Federspiel MJ. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display. Virology 2003;315(2):303-12
  • Waterkamp DA, Müller OJ, Ying Y, et al. Isolation of targeted AAV2 vectors from novel virus display libraries. J Gene Med 2006;8(11):1307-19
  • Michelfelder S, Lee MK, Delima-Hahn E, et al. Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. Exp Hematol 2007;35(12):1766-76

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.