648
Views
119
CrossRef citations to date
0
Altmetric
Review

Antibody-modified liposomes for cancer chemotherapy

Pages 1003-1025 | Published online: 29 Aug 2008

Bibliography

  • Torchilin VP, editor. Nanoparticualtes as pharmaceutical carriers. London, UK: Imperial College Press; 2006
  • Gregoriadis G. The carrier potential of liposomes in biology and medicine (first of two parts). N Engl J Med 1976;295(13):704-10
  • Gregoriadis G. The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med 1976;295(14):765-70
  • Müller RH. Colloidal carriers for controlled drug delivery and targeting: modification, characterization, and in vivo distribution. Stuttgart, Boca Raton: Wissenschaftliche Verlagsgesellschaft, CRC Press; 1991
  • Cohen S, Bernstein H, editors. Microparticulate systems for the delivery of proteins and vaccines. New York: Marcel Dekker; 1996
  • Torchilin VP, editor. Nanoparticulates as pharmaceutical carriers. London: Imperial College Press; 2006
  • Torchilin VP, editor. Multifunctional pharmaceutical nanocarriers. New York: Springer; 2008
  • Amiji M, editor. Nanotechnology for cancer therapy. Boca Raton, FL: CRS Press; 2007
  • Peppas NA, Hilt JZ, Thomas JB, editors. Nanothechnology in therapeutics. Wymondham, UK: Horizon Bioscience; 2007
  • Thassu D, Deleers M, Pathak Y, editors. Nanoparticulate drug delivery systems. New York, NY: Informa Healthcare USA; 2007
  • Jabr-Milane L, van Vlerken L, Devalapally H, et al. Multi-functional nanocarriers for targeted delivery of drugs and genes. J Control Release 2008 April 29 [Epub ahead of print]
  • Rytting E, Nguyen J, Wang X, Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 2008;5(6):629-39
  • Sanvicens N, Marco MP. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol 2008;26(8):425-33
  • Chiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine (London, England) 2008;3(3):367-93
  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14(5):1310-6
  • Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9(2):E128-47
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58(14):1532-55
  • Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994;263(5153):1600-3
  • Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001;46(1-3):169-85
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001;74(1-3):47-61
  • Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995;55(17):3752-6
  • Lasic DD, Martin FJ, editors. Stealth liposomes. Boca Raton: CRC Press; 1995
  • Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 1995;16(2):141-55
  • Lukyanov AN, Hartner WC, Torchilin VP. Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 2004;94(1):187-93
  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65(1-2):271-84
  • Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990;268(1):235-7
  • Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1990;1029(1):91-7
  • Allen TM, Hansen C, Martin F, et al. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991;1066(1):29-36
  • Blume G, Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta 1993;1146(2):157-68
  • Torchilin VP, Omelyanenko VG, Papisov MI, et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1994;1195(1):11-20
  • Torchilin VP, Shtilman MI, Trubetskoy VS, et al. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim Biophys Acta 1994;1195(1):181-4
  • Torchilin VP. Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul 1998;15(1):1-19
  • Weinstein JN, Blumenthal R, Sharrow SO, Henkart PA. Antibody-mediated targeting of liposomes. Binding to lymphocytes does not ensure incorporation of vesicle contents into the cells. Biochim Biophys Acta 1978;509(2):272-88
  • Heath TD, Fraley RT, Papahdjopoulos D. Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science 1980;210(4469):539-41
  • Torchilin VP, Klibanov AL, Huang L, et al. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 1992;6(9):2716-9
  • Torchilin VP, Narula J, Halpern E, Khaw BA. Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta 1996;1279(1):75-83
  • Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 2003;42(5):439-62
  • Na K, Sethuraman VT, Bae YH. Stimuli-sensitive polymeric micelles as anticancer drug carriers. Anticancer Agents Med Chem 2006;6(6):525-35
  • Sawant RM, Hurley JP, Salmaso S, et al. “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 2006;17(4):943-9
  • Torchilin VP. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev 2005;57(1):95-109
  • Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 2008;60(4-5):548-58
  • Cammas S, Suzuki K, Sone C, et al. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release 1997;48(2-3):157-64
  • Le Garrec D, Taillefer J, Van Lier JE, et al. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target 2002;10(5):429-37
  • Meyer O, Papahadjopoulos D, Leroux JC. Copolymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes. FEBS Lett 1998;421(1):61-4
  • Chung JE, Yokoyama M, Yamato M, et al. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 1999;62(1-2):115-27
  • Stroh M, Zimmer JP, Duda DG, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 2005;11(6):678-82
  • Woodle MC, Storm G, editors. Long circulating liposomes: old drugs, new therapeutics. Berlin: Springer; 1998
  • Lasic DD, Papahadjopoulos D, editors. Medical applications of liposomes. Amsterdam; New York: Elsevier; 1998
  • Torchilin VP, Weissig V, editors. Liposomes: a practical approach. 2nd edition. Oxford; New York: Oxford University Press; 2003
  • Gregoriadis G, editor. Liposome technology: liposome preparation and related techniques. 3rd edition. London, UK: Taylor & Francis; 2007
  • Szoka F Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann Rev Biophys Bioeng 1980;9:467-508
  • Madden TD, Bally MB, Hope MJ, et al. Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents. Biochim Biophys Acta 1985;817(1):67-74
  • Connor J, Huang L. pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res 1986;46(7):3431-5
  • Khaw BA, Torchilin VP, Vural I, Narula J. Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nat Med 1995;1(11):1195-8
  • Khaw BA, daSilva J, Vural I, et al. Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J Control Release 2001;75(1-2):199-210
  • Torchilin VP, Levchenko TS. TAT-liposomes: a novel intracellular drug carrier. Curr Protein Pept Sci 2003;4(2):133-40
  • Torchilin VP, Levchenko TS, Rammohan R, et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 2003;100(4):1972-7
  • Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 1987;3(2):123-93
  • Symon Z, Peyser A, Tzemach D, et al. Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 1999;86(1):72-78
  • Perez AT, Domenech GH, Frankel C, Vogel CL. Pegylated liposomal doxorubicin (Doxil) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer Invest 2002;20(Suppl 2):22-9
  • O'Shaughnessy JA. Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin Breast Cancer 2003;4(5):318-28
  • Schwonzen M, Kurbacher CM, Mallmann P. Liposomal doxorubicin and weekly paclitaxel in the treatment of metastatic breast cancer. Anticancer Drugs 2000;11(9):681-5
  • Goncalves A, Braud AC, Viret F, et al. Phase I study of pegylated liposomal doxorubicin (Caelyx) in combination with carboplatin in patients with advanced solid tumors. Anticancer Res 2003;23(4):3543-8
  • Harrington KJ, Lewanski C, Northcote AD, et al. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur J Cancer 2001;37(16):2015-22
  • Johnston SR, Gore ME. Caelyx: phase II studies in ovarian cancer. Eur J Cancer 2001;37(Suppl 9):S8-14
  • Schmidinger M, Wenzel C, Locker GJ, et al. Pilot study with pegylated liposomal doxorubicin for advanced or unresectable hepatocellular carcinoma. Br J Cancer 2001;85(12):1850-2
  • Wollina U, Dummer R, Brockmeyer NH, et al. Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma. Cancer 2003;98(5):993-1001
  • Skubitz KM. Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Invest 2003;21(2):167-76
  • Perez-Lopez ME, Curiel T, Gomez JG, Jorge M. Role of pegylated liposomal doxorubicin (Caelyx) in the treatment of relapsing ovarian cancer. Anticancer Drugs 2007;18(5):611-7
  • Seiden MV, Muggia F, Astrow A, et al. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol 2004;93(1):229-32
  • Sundar S, Jha TK, Thakur CP, et al. Single-dose liposomal amphotericin B in the treatment of visceral leishmaniasis in India: a multicenter study. Clin Infect Dis 2003;37(6):800-4
  • Grant GJ, Barenholz Y, Bolotin EM, et al. A novel liposomal bupivacaine formulation to produce ultralong-acting analgesia. Anesthesiology 2004;101(1):133-7
  • Torchilin VP. Liposomes as targetable drug carriers. Crit Rev Ther Drug Carrier Syst 1985;2(1):65-115
  • Trubetskoy VS, Torchilin VP. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev 1995;16:311-20
  • Torchilin VP. How do polymers prolong circulation times of liposomes. J Liposome Res 1996;9:99-116
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189-207
  • Gabizon AA. Liposome circulation time and tumor targeting: Implications for cancer chemotherapy. Adv Drug Deliv Rev 1995;16:285-94
  • Maruyama K, Yuda T, Okamoto A, et al. Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes. Chem Pharm Bull (Tokyo) 1991;39(6):1620-2
  • Senior J, Delgado C, Fisher D, et al. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1991;1062(1):77-82
  • Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991;88(24):11460-4
  • Naper DH. Polymeric stabilization of colloidal dispersions. New York: Academic Press; 1983
  • Woodle MC. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids 1993;64(1-3):249-62
  • Allen TM. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev 1994;13(3):285-309
  • Chonn A, Semple SC, Cullis PR. Separation of large unilamellar liposomes from blood components by a spin column procedure: towards identifying plasma proteins which mediate liposome clearance in vivo. Biochim Biophys Acta 1991;1070(1):215-22
  • Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo Relation to circulation lifetimes. J Biol Chem 1992;267(26):18759-65
  • Lasic DD, Martin FJ, Gabizon A, et al. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1991;1070(1):187-92
  • Gabizon A, Papahadjopoulos D. The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta 1992;1103(1):94-100
  • Needham D, McIntosh TJ, Lasic DD. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1992;1108(1):40-8
  • Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev 1995;16:157-82
  • Pang SNJ. Final report on the safety assessment of Polyethylene Glycols (PEGs)-6, -8, -32, -75, -150, -14M, -20M. J Am Coll Toxicol 1993;12(5):429-57
  • Powell GM. Polyethylene glycol. In: Davidson RL, editor. Handbook of water-soluble gums and resins. New York: McGraw-Hill; 1980. p. 1-31
  • Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 1994;83(4):601-6
  • Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 2001;22(5):405-17
  • Torchilin VP. Strategies and means for drug targeting: an overview. In: Muzykantov V, Torchilin VP, editors, Biomedical aspects of drug targeting. Boston: Kluwer Academic Pub; 2002. p. 3-26
  • Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 1988;85(18):6949-53
  • Allen TM, Hansen CB, de Menezes DEL. Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 1995;16(2-3):267-84
  • Hwang KJ. Liposome pharamacokinetics. In: Ostro MJ, editors, Liposomes: from biophysics to therapeutics. New York: Dekker; 1987. p. 109-56
  • Yuan F, Leunig M, Huang SK, et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 1994;54(13):3352-6
  • Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 2001;19(4):424-36
  • Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003;42(6):463-78
  • Moein Moghimi S, Hamad I, Bunger R, et al. Activation of the human complement system by cholesterol-rich and PEGylated liposomes-modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels. J Liposome Res 2006;16(3):167-74
  • Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1991;1068(2):133-41
  • Levchenko TS, Rammohan R, Lukyanov AN, et al. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 2002;240(1-2):95-102
  • Zalipsky S, Qazen M, Walker JA 2nd, et al. New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem 1999;10(5):703-7
  • Kale AA, Torchilin VP. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem 2007;18(2):363-70
  • Rogers JA, Anderson KE. The potential of liposomes in oral drug delivery. Crit Rev Ther Drug Carrier Syst 1998;15(5):421-80
  • Wu ZH, Ping QN, Wei Y, Lai JM. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol Sin 2004;25(7):966-72
  • Taira MC, Chiaramoni NS, Pecuch KM, Alonso-Romanowski S. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv 2004;11(2):123-8
  • Li H, Song JH, Park JS, Han K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int J Pharm 2003;58(1-2):11-9
  • Yamabe K, Kato Y, Onishi H, Machida Y. Potentiality of double liposomes containing salmon calcitonin as an oral dosage form. J Control Release 2003;89(3):429-36
  • Minato S, Iwanaga K, Kakemi M, et al. Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine: effect of lipid dose on systemic and mucosal immunity. J Control Release 2003;89(2):189-97
  • Xing L, Dawei C, Liping X, Rongqing Z. Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beads-entrapped liposome. J Control Release 2003;93(3):293-300
  • Van Winden EC. Freeze-drying of liposomes: theory and practice. Methods Enzymol 2003;367:99-110
  • Koshkina NV, Golunski E, Roberts LE, et al. Cyclosporin A aerosol improves the anticancer effect of paclitaxel aerosol in mice. J Aerosol Med 2004;17(1):7-14
  • Vyas SP, Kannan ME, Jain S, et al. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 2004;269(1):37-49
  • Konduri KS, Nandedkar S, Duzgunes N, et al. Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol 2003;111(2):321-7
  • Gilbert BE, Seryshev A, Knight V, Brayton C. 9-nitrocamptothecin liposome aerosol: lack of subacute toxicity in dogs. Inhal Toxicol 2002;14(2):185-97
  • Koshkina NV, Kleinerman ES, Waidrep C, et al. 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin Cancer Res 2000;6(7):2876-80
  • Stark B, Debbage P, Andreae F, et al. Association of vasoactive intestinal peptide with polymer-grafted liposomes: structural aspects for pulmonary delivery. Biochim Biophys Acta 2007;1768(3):705-14
  • Desai TR, Hancock RE, Finlay WH. A facile method of delivery of liposomes by nebulization. J Control Release 2002;84(1-2):69-78
  • Zaru M, Mourtas S, Klepetsanis P, et al. Liposomes for drug delivery to the lungs by nebulization. Eur J Pharm Biopharm 2007;67(3):655-66
  • Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 2001;50(1-2):143-56
  • Phillips WT, Klipper R, Goins B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J Pharmacol Exp Ther 2000;295(1):309-13
  • Kim CK, Han JH. Lymphatic delivery and pharmacokinetics of methotrexate after intramuscular injection of differently charged liposome-entrapped methotrexate to rats. J Microencapsul 1995;12(4):437-46
  • Fujimoto Y, Okuhata Y, Tyngi S, et al. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol Pharm Bull 2000;23(1):97-100
  • Ahmed M, Lukyanov AN, Torchilin V, et al. Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. J Vasc Interv Radiol 2005;16(10):1365-71
  • Ahmed M, Liu Z, Lukyanov AN, et al. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology 2005;235(2):469-77
  • Crommelin DJ, Storm G. Liposomes: from the bench to the bed. J Liposome Res 2003;13(1):33-6
  • Blume G, Cevc G, Crommelin MD, et al. Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1993;1149(1):180-4
  • Abra RM, Bankert RB, Chen F, et al. The next generation of liposome delivery systems: recent experience with tumor-targeted, sterically-stabilized immunoliposomes and active-loading gradients. J Liposome Res 2002;12(1-2):1-3
  • Torchilin VP, Levchenko TS, Lukyanov AN, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta 2001;1511(2):397-411
  • Zalipsky S, Gittelman J, Mullah N, et al. Biologically active ligand-bearing polymer-grafted liposomes. In: Gregoriadis G, editor, Targeting of drugs 6: strategies for stealth therapeutic systems. New York: Plenum Press; 1998. p. 131-9
  • Torchilin VP, Rammohan R, Weissig V, et al. PEG-Immunoliposomes: attachment of monoclonal antibody to distal ends of PEG chains via p-Nitrophenylcarbonyl groups. 27th International Symposium on Controlled Release of Bioactive Materials; 2000; Paris: Controlled Release Society, Inc.; 2000. p. 217-8
  • Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003;100(10):6039-44
  • Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2005;2(4):369-81
  • Maruyama K, Takizawa T, Yuda T, et al. Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim Biophys Acta 1995;1234(1):74-80
  • Zalipsky S. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconjug Chem 1993;4(4):296-9
  • Kirpotin D, Park JW, Hong K, et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 1997;36(1):66-75
  • Hansen CB, Kao GY, Moase EH, et al. Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim Biophys Acta 1995;1239(2):133-44
  • Bendas G, Krause A, Bakowsky U, et al. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int J Pharm 1999;181(1):79-93
  • Torchilin VP, Weissig V, Martin FJ, Heath TD. Surface modifications of liposomes. In: Torchilin VP, Weissig V, editors, Liposomes: a practical approach. 2nd edition. Oxford; New York: Oxford University Press; 2003. p. 193-229
  • Klibanov AL, Torchilin VP, Zalipsky S. Long-circulating sterically protected liposomes. In: Torchilin VP, Weissig V, editors, Liposomes: a practical approach. 2nd edition. Oxford; New York: Oxford University Press; 2003. p. 231-65
  • Ishida T, Iden DL, Allen TM. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett 1999;460(1):129-33
  • Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 2004;100(1):135-44
  • Elbayoumi TA, Torchilin VP. Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Eur J Pharm Sci 2007;32(3):159-68
  • Vingerhoeds MH, Storm G, Crommelin DJ. Immunoliposomes in vivo. Immunomethods 1994;4(3):259-72
  • Torchilin VP. Affinity liposomes in vivo: factors influencing target accumulation. J Mol Recognit 1996;9(5-6):335-46
  • Torchilin VP. Drug targeting. Eur J Pharm Sci 2000;11(Suppl 2):S81-91
  • Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol 2004;31(6 Suppl 13):196-205
  • Kontermann RE. Immunoliposomes for cancer therapy. Curr Opin Mol Ther 2006;8(1):39-45
  • Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 2008;5(2):189-204
  • Torchilin VP, Goldmacher VS, Smirnov VN. Comparative studies on covalent and noncovalent immobilization of protein molecules on the surface of liposomes. Biochem Biophys Res Commun 1978;85(3):983-90
  • Torchilin VP, Khaw BA, Smirnov VN, Haber E. Preservation of antimyosin antibody activity after covalent coupling to liposomes. Biochem Biophys Res Commun 1979;89(4):1114-9
  • Torchilin VP, Omel'yanenko VG, Klibanov AL, et al. Incorporation of hydrophilic protein modified with hydrophobic agent into liposome membrane. Biochim Biophys Acta 1980;602(3):511-21
  • Weissig V, Lasch J, Klibanov AL, Torchilin VP. A new hydrophobic anchor for the attachment of proteins to liposomal membranes. FEBS Lett 1986;202(1):86-90
  • Bogdanov AA Jr, Klibanov AL, Torchilin VP. Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide. FEBS Lett 1988;231(2):381-4
  • Holmberg E, Maruyama K, Litzinger DC, et al. Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem Biophys Res Commun 1989;165(3):1272-8
  • Bogdanov AA, Klibanov AL, Torchilin VP. Immobilization of alpha chymotrypsin on sucrose stearate-palmitate containing liposomes. FEBS Lett 1984;175(1):178-82
  • Lasch J, Niedermann G, Bogdanov AA, Torchilin VP. Thiolation of preformed liposomes with iminothiolane. FEBS Lett 1987;214(1):13-6
  • Niedermann G, Weissig V, Sternberg B, Lasch J. Carboxyacyl derivatives of cardiolipin as four-tailed hydrophobic anchors for the covalent coupling of hydrophilic proteins to liposomes. Biochim Biophys Acta 1991;1070(2):401-8
  • Schwendener RA, Trub T, Schott H, et al. Comparative studies of the preparation of immunoliposomes with the use of two bifunctional coupling agents and investigation of in vitro immunoliposome-target cell binding by cytofluorometry and electron microscopy. Biochim Biophys Acta 1990;1026(1):69-79
  • Klibanov AL, Muzykantov VR, Ivanov NN, Torchilin VP. Evaluation of quantitative parameters of the interaction of antibody-bearing liposomes with target antigens. Anal Biochem 1985;150(2):251-7
  • Torchilin VP, Klibanov AL, Ivanov NN, et al. Binding of antibodies in liposomes to extracellular matrix antigens. J Cell Biochem 1985;28(1):23-9
  • Chazov EI, Alexeev AV, Antonov AS, et al. Endothelial cell culture on fibrillar collagen: model to study platelet adhesion and liposome targeting to intercellular collagen matrix. Proc Natl Acad Sci USA 1981;78(9):5603-7
  • Klibanov AL, Maruyama K, Beckerleg AM, et al. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1991;1062(2):142-8
  • Allen TM, Brandeis E, Hansen CB, et al. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim Biophys Acta 1995;1237(2):99-108
  • Kamps JA, Scherphof GL. Receptor versus non-receptor mediated clearance of liposomes. Adv Drug Deliv Rev 1998;32(1-2):81-97
  • Flavell DJ, Noss A, Pulford KA, et al. Systemic therapy with 3BIT, a triple combination cocktail of anti-CD19, -CD22, and -CD38-saporin immunotoxins, is curative of human B-cell lymphoma in severe combined immunodeficient mice. Cancer Res 1997;57(21):4824-9
  • Maruyama K, Takahashi N, Tagawa T, et al. Immunoliposomes bearing polyethyleneglycol-coupled Fab′ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett 1997;413(1):177-80
  • Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett 1997;118(2):153-60
  • Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 2002;8(4):1172-81
  • Moreira JN, Gaspar R, Allen TM. Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochim Biophys Acta 2001;1515(2):167-76
  • Park JW, Kirpotin DB, Hong K, et al. Tumor targeting using anti-her2 immunoliposomes. J Control Release 2001;74(1-3):95-113
  • Kirpotin DB, Drummond DC, Shao Y, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006;66(13):6732-40
  • Sapra P, Allen TM. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin Cancer Res 2004;10(7):2530-7
  • Allen TM, Mumbengegwi DR, Charrois GJ. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin Cancer Res 2005;11(9):3567-73
  • Hosokawa S, Tagawa T, Niki H, et al. Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Br J Cancer 2003;89(8):1545-51
  • Lopes de Menezes DE, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 1998;58(15):3320-30
  • Maruyama K, Kennel SJ, Huang L. Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 1990;87(15):5744-8
  • Maruyama K, Holmberg E, Kennel SJ, et al. Characterization of in vivo immunoliposome targeting to pulmonary endothelium. J Pharm Sci 1990;79(11):978-84
  • Litzinger DC, Huang L. Biodistribution and immunotargetability of ganglioside-stabilized dioleoylphosphatidylethanolamine liposomes. Biochim Biophys Acta 1992;1104(1):179-87
  • Mori A, Kennel SJ, van Borssum Waalkes M, et al. Characterization of organ-specific immunoliposomes for delivery of 3′,5′-O-dipalmitoyl-5-fluoro-2′-deoxyuridine in a mouse lung-metastasis model. Cancer Chemother Pharmacol 1995;35(6):447-56
  • Maruyama K. PEG-immunoliposome. Biosci Rep 2002;22(2):251-66
  • Park JW, Hong K, Carter P, et al. Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc Natl Acad Sci USA 1995;92(5):1327-31
  • Yang T, Choi MK, Cui FD, et al. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control Release 2007;120(3):169-77
  • Cheng WW, Das D, Suresh M, Allen TM. Expression and purification of two anti-CD19 single chain Fv fragments for targeting of liposomes to CD19-expressing cells. Biochim Biophys Acta 2007;1768(1):21-9
  • Cheng WW, Allen TM. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv. J Control Release 2008;126(1):50-8
  • Brignole C, Marimpietri D, Gambini C, et al. Development of Fab′ fragments of anti-GD2; immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett 2003;197(1-2):199-204
  • Pastorino F, Brignole C, Marimpietri D, et al. Doxorubicin-loaded Fab′ fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Res 2003;63(1):86-92
  • Pastorino F, Brignole C, Di Paolo D, et al. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res 2006;66(20):10073-82
  • Raffaghello L, Pagnan G, Pastorino F, et al. Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma. Cancer Lett 2003;197(1-2):151-5
  • Hatakeyama H, Akita H, Ishida E, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 2007;342(1-2):194-200
  • Atobe K, Ishida T, Ishida E, et al. In vitro efficacy of a sterically stabilized immunoliposomes targeted to membrane type 1 matrix metalloproteinase (MT1-MMP). Biol Pharm Bull 2007;30(5):972-8
  • Mamot C, Drummond DC, Greiser U, et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 2003;63(12):3154-61
  • Mamot C, Drummond DC, Noble CO, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005;65(24):11631-8
  • Mamot C, Ritschard R, Kung W, et al. EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J Drug Target 2006;14(4):215-23
  • Pan X, Lee RJ. Construction of anti-EGFR immunoliposomes via folate-folate binding protein affinity. Int J Pharm 2007;336(2):276-83
  • Pan X, Wu G, Yang W, et al. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 2007;18(1):101-8
  • Sugano M, Egilmez NK, Yokota SJ, et al. Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res 2000;60(24):6942-9
  • Trubetskaya OV, Trubetskoy VS, Domogatsky SP, et al. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture. FEBS Lett 1988;228(1):131-4
  • Asgeirsdottir SA, Zwiers PJ, Morselt HW, et al. Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes. Am J Physiol Renal Physiol 2008;294(3):F554-61
  • Hussain S, Pluckthun A, Allen TM, Zangemeister-Wittke U. Antitumor activity of an epithelial cell adhesion molecule targeted nanovesicular drug delivery system. Mol Cancer Ther 2007;6(11):3019-27
  • Voinea M, Manduteanu I, Dragomir E, et al. Immunoliposomes directed toward VCAM-1 interact specifically with activated endothelial cells – a potential tool for specific drug delivery. Pharm Res 2005;22(11):1906-17
  • Marty C, Schwendener RA. Cytotoxic tumor targeting with scFv antibody-modified liposomes. Methods Mol Med 2005;109:389-402
  • Volkel T, Holig P, Merdan T, et al. Targeting of immunoliposomes to endothelial cells using a single-chain Fv fragment directed against human endoglin (CD105). Biochim Biophys Acta 2004;1663(1-2):158-66
  • Beduneau A, Saulnier P, Hindre F, et al. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab' fragments. Biomaterials 2007;28(33):4978-90
  • Schnyder A, Krahenbuhl S, Drewe J, Huwyler J. Targeting of daunomycin using biotinylated immunoliposomes: pharmacokinetics, tissue distribution and in vitro pharmacological effects. J Drug Target 2005;13(5):325-35
  • Koning GA, Morselt HW, Velinova MJ, et al. Selective transfer of a lipophilic prodrug of 5-fluorodeoxyuridine from immunoliposomes to colon cancer cells. Biochim Biophys Acta 1999;1420(1-2):153-67
  • Koning GA, Kamps JA, Scherphof GL. Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes. Cancer Detect Prev 2002;26(4):299-307
  • Kamps JA, Koning GA, Velinova MJ, et al. Uptake of long-circulating immunoliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer. J Drug Target 2000;8(4):235-45
  • Iakoubov L, Rokhlin O, Torchilin V. Anti-nuclear autoantibodies of the aged reactive against the surface of tumor but not normal cells. Immunol Lett 1995;47(1-2):147-9
  • Iakoubov L, Mongayt D, Torchilin VP. Monoclonal anti-nuclear autoantibody from the aged effectively suppresses tumor development in vivo. Cancer Biother Radiopharm 1995;8:299-310
  • Iakoubov LZ, Torchilin VP. A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol Res 1997;9(8):439-46
  • Iakoubov LZ, Torchilin VP. Nucleosome-releasing treatment makes surviving tumor cells better targets for nucleosome-specific anticancer antibodies. Cancer Detect Prev 1998;22(5):470-5
  • Elbayoumi TA, Torchilin VP. Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Eur J Pharm Sci 2007;32(3):159-68
  • Elbayoumi TA, Torchilin VP. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur J Nucl Med Mol Imaging 2006;33(10):1196-205
  • Gupta B, Torchilin VP. Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 2007;56(8):1215-23
  • Elbayoumi TA, Torchilin VP. Tumor-specific antibody-mediated targeted delivery of Doxil((R)) reduces the manifestation of auricular erythema side effect in mice. Int J Pharm 2008;357(1-2):272-9
  • Lundberg BB, Griffiths G, Hansen HJ. Cellular association and cytotoxicity of doxorubicin-loaded immunoliposomes targeted via Fab' fragments of an anti-CD74 antibody. Drug Deliv 2007;14(3):171-5
  • Roth A, Drummond DC, Conrad F, et al. Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells. Mol Cancer Ther 2007;6(10):2737-46
  • Wang GP, Qi ZH, Chen FP. Treatment of acute myeloid leukemia by directly targeting both leukemia stem cells and oncogenic molecule with specific scFv-immunolipoplexes as a deliverer. Med Hypotheses 2008;70(1):122-7
  • Tuffin G, Waelti E, Huwyler J, et al. Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J Am Soc Nephrol 2005;16(11):3295-305
  • Baum P, Muller D, Ruger R, Kontermann RE. Single-chain Fv immunoliposomes for the targeting of fibroblast activation protein-expressing tumor stromal cells. J Drug Target 2007;15(6):399-406
  • Pan H, Han L, Chen W, et al. Targeting to tumor necrotic regions with biotinylated antibody and streptavidin modified liposomes. J Control Release 2008;125(3):228-35
  • Mastrobattista E, Koning GA, van Bloois L, et al. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem 2002;277(30):27135-43
  • Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004;91(10):1775-81
  • Hatakeyama H, Akita H, Maruyama K, et al. Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm 2004;281(1-2):25-33
  • Ishida O, Maruyama K, Tanahashi H, et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 2001;18(7):1042-8
  • Derycke AS, De Witte PA. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int J Oncol 2002;20(1):181-7
  • Gijsens A, Derycke A, Missiaen L, et al. Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes. Int J Cancer 2002;101(1):78-85
  • Iinuma H, Maruyama K, Okinaga K, et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 2002;99(1):130-7
  • Eavarone DA, Yu X, Bellamkonda RV. Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 2000;51(1):10-4
  • Omori N, Maruyama K, Jin G, et al. Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol Res 2003;25(3):275-9
  • Joshee N, Bastola DR, Cheng PW. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking. Hum Gene Ther 2002;13(16):1991-2004
  • Xu L, Huang CC, Huang W, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 2002;1(5):337-46
  • Tan PH, Manunta M, Ardjomand N, et al. Antibody targeted gene transfer to endothelium. J Gene Med 2003;5(4):311-23
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996;93(24):14164-9
  • Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 1991;88(13):5572-6
  • Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994;269(5):3198-204
  • Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 2002;54(5):675-93
  • Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 2004;56(8):1177-92
  • Ni S, Stephenson SM, Lee RJ. Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res 2002;22(4):2131-5
  • Pan XQ, Wang H, Lee RJ. Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 2003;20(3):417-22
  • Gupta Y, Jain A, Jain P, Jain SK. Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J Drug Target 2007;15(3):231-40
  • Pan XQ, Zheng X, Shi G, et al. Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 2002;100(2):594-602
  • Stephenson SM, Yang W, Stevens PJ, et al. Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res 2003;23(4):3341-5
  • Lu Y, Low PS. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 2002;51(3):153-62
  • Reddy JA, Abburi C, Hofland H, et al. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 2002;9(22):1542-50
  • Leamon CP, Cooper SR, Hardee GE. Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem 2003;14(4):738-47
  • Drummond DC, Hong K, Park JW, et al. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam Horm 2000;60:285-332
  • Dagar S, Krishnadas A, Rubinstein I, et al. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release 2003;91(1-2):123-33
  • Schiffelers RM, Koning GA, ten Hagen TL, et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 2003;91(1-2):115-22
  • Lestini BJ, Sagnella SM, Xu Z, et al. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J Control Release 2002;78(1-3):235-47
  • Qin J, Chen D, Hu H, et al. Surface modification of RGD-liposomes for selective drug delivery to monocytes/neutrophils in brain. Chem Pharm Bull (Tokyo) 2007;55(8):1192-7
  • Asai T, Shimizu K, Kondo M, et al. Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett 2002;520(1-3):167-70
  • Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer 2004;108(5):780-9
  • Hashida M, Nishikawa M, Yamashita F, Takakura Y. Cell-specific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev 2001;52(3):187-96
  • Lee CM, Tanaka T, Murai T, et al. Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res 2002;62(15):4282-8
  • Terada T, Mizobata M, Kawakami S, et al. Optimization of tumor-selective targeting by basic fibroblast growth factor-binding peptide grafted PEGylated liposomes. J Control Release 2007;119(3):262-70
  • Ikehara Y, Kojima N. Development of a novel oligomannose-coated liposome-based anticancer drug-delivery system for intraperitoneal cancer. Curr Opin Mol Ther 2007;9(1):53-61
  • Boddapati SV, Tongcharoensirikul P, Hanson RN, et al. Mitochondriotropic liposomes. J Liposome Res 2005;15(1-2):49-58
  • Moreira JN, Ishida T, Gaspar R, Allen TM. Use of the post-insertion technique to insert peptide ligands into pre-formed stealth liposomes with retention of binding activity and cytotoxicity. Pharm Res 2002;19(3):265-9
  • Emanuel N, Kedar E, Bolotin EM, et al. Targeted delivery of doxorubicin via sterically stabilized immunoliposomes: pharmacokinetics and biodistribution in tumor-bearing mice. Pharm Res 1996;13(6):861-8
  • Bendas G, Rothe U, Scherphof GL, Kamps JA. The influence of repeated injections on pharmacokinetics and biodistribution of different types of sterically stabilized immunoliposomes. Biochim Biophys Acta 2003;1609(1):63-70
  • Phillips NC, Dahman J. Immunogenicity of immunoliposomes: reactivity against species-specific IgG and liposomal phospholipids. Immunol Lett 1995;45(3):149-52
  • Harding JA, Engbers CM, Newman MS, et al. Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta 1997;1327(2):181-92
  • Iden DL, Allen TM. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochim Biophys Acta 2001;1513(2):207-16
  • Boorjian SA, Milowsky MI, Kaplan J, et al. Phase 1/2 clinical trial of interferon alpha2b and weekly liposome-encapsulated all-trans retinoic acid in patients with advanced renal cell carcinoma. J Immunother 2007;30(6):655-62
  • Tsimberidou AM, Tirado-Gomez M, Andreeff M, et al. Single-agent liposomal all-trans retinoic acid can cure some patients with untreated acute promyelocytic leukemia: an update of The University of Texas MD Anderson Cancer Center Series. Leuk Lymphoma 2006;47(6):1062-8
  • Booser DJ, Esteva FJ, Rivera E, et al. Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 2002;50(1):6-8
  • Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res 2007;13(15 Pt 2):s4652-4
  • Gonzalez R, Hutchins L, Nemunaitis J, et al. Phase 2 trial of Allovectin-7 in advanced metastatic melanoma. Melanoma Res 2006;16(6):521-6
  • Cooley T, Henry D, Tonda M, et al. A randomized, double-blind study of pegylated liposomal doxorubicin for the treatment of AIDS-related Kaposi's sarcoma. Oncologist 2007;12(1):114-23
  • Balbi G, Visconti S, Monteverde A, Manganaro MA, Cardone A. Liposomal doxorubicin: a phase II trial. Acta Biomed 2007;78(3):210-3
  • Adamo V, Lorusso V, Rossello R, et al. Pegylated liposomal doxorubicin and gemcitabine in the front-line treatment of recurrent/metastatic breast cancer: a multicentre phase II study. Br J Cancer 2008;98(12):1916-21
  • Ferrandina G, Ludovisi M, Lorusso D, et al. Phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in progressive or recurrent ovarian cancer. J Clin Oncol 2008;26(6):890-6
  • Yoo GH, Hung MC, Lopez-Berestein G, et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res 2001;7(5):1237-45
  • Yang T, Cui FD, Choi MK, et al. Liposome formulation of paclitaxel with enhanced solubility and stability. Drug Deliv 2007;14(5):301-8
  • Zheng J, Liu J, Dunne M, et al. In vivo performance of a liposomal vascular contrast agent for CT and MR-based image guidance applications. Pharm Res 2007;24(6):1193-201
  • Dark GG, Calvert AH, Grimshaw R, et al. Randomized trial of two intravenous schedules of the topoisomerase I inhibitor liposomal lurtotecan in women with relapsed epithelial ovarian cancer: a trial of the national cancer institute of Canada clinical trials group. J Clin Oncol 2005;23(9):1859-66
  • Kim ES, Lu C, Khuri FR, et al. A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer 2001;34(3):427-32
  • Jehn CF, Boulikas T, Kourvetaris A, et al. Pharmacokinetics of liposomal cisplatin (lipoplatin) in combination with 5-FU in patients with advanced head and neck cancer: first results of a phase III study. Anticancer Res 2007;27(1A):471-5
  • Kelland L. Broadening the clinical use of platinum drug-based chemotherapy with new analogues. Satraplatin and picoplatin. Expert Opin Investig Drugs 2007;16(7):1009-21
  • Sarris AH, Hagemeister F, Romaguera J, et al. Liposomal vincristine in relapsed non-Hodgkin's lymphomas: early results of an ongoing phase II trial. Ann Oncol 2000;11(1):69-72
  • Lopes de Menezes DE, Pilarski LM, Belch AR, Allen TM. Selective targeting of immunoliposomal doxorubicin against human multiple myeloma in vitro and ex vivo. Biochim Biophys Acta 2000;1466(1-2):205-20
  • Maruyama K. In vivo targeting by liposomes. Biol Pharm Bull 2000;23(7):791-9
  • Matsuo H, Wakasugi M, Takanaga H, et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. J Control Release 2001;77(1-2):77-86
  • Koning GA, Gorter A, Scherphof GL, Kamps JA. Antiproliferative effect of immunoliposomes containing 5-fluorodeoxyuridine-dipalmitate on colon cancer cells. Br J Cancer 1999;80(11):1718-25
  • Pagnan G, Montaldo PG, Pastorino F, et al. GD2-mediated melanoma cell targeting and cytotoxicity of liposome-entrapped fenretinide. Int J Cancer 1999;81(2):268-74
  • Tseng YL, Hong RL, Tao MH, Chang FH. Sterically stabilized anti-idiotype immunoliposomes improve the therapeutic efficacy of doxorubicin in a murine B-cell lymphoma model. Int J cancer 1999;80(5):723-30
  • Kessner S, Krause A, Rothe U, Bendas G. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells. Biochim Biophys Acta 2001;1514(2):177-90
  • Nam SM, Kim HS, Ahn WS, Park YS. Sterically stabilized anti-G(M3), anti-Le(x) immunoliposomes: targeting to B16BL6, HRT-18 cancer cells. Oncol Res 1999;11(1):9-16
  • Marty C, Odermatt B, Schott H, et al. Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br J Cancer 2002;87(1):106-12
  • Mukherjee S, Das L, Kole L, et al. Targeting of parasite-specific immunoliposome-encapsulated doxorubicin in the treatment of experimental visceral leishmaniasis. J Infect Dis 2004;189(6):1024-34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.