792
Views
64
CrossRef citations to date
0
Altmetric
Reviews

Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics

&
Pages 931-949 | Published online: 29 Aug 2008

Bibliography

  • Broccolo F, Cainelli G, Caltabiano G, et al. Design, synthesis, and biological evaluation of 4-alkyliden-β-lactams: new products with promising antibiotic activity against resistant bacteria. J Med Chem 2006;49:2804-11
  • Wilke MS, Lovering AL, Natalie CJ, Strynadka NCJ. β-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 2005;8:525-33
  • Dantzig AH. Oral absorption of β-lactams by intestinal peptide transport proteins. Adv Drug Deliv Rev 1997;23:63-76
  • Waxman DJ, Strominger JL. Sequence of active site peptides from the penicillin-sensitive D-alanine carboxypeptidase of Bacillus subtilis. J Biol Chem 1980;255:3964-76
  • Frere JM, Nguyen-Disteche M, Coyette J, Joris B. Interaction with the penicillin binding proteins. In: Page, MI, editor, The chemistry of β-lactams. Blackie Academic and Professional, NewYork; 1992. p. 148-97
  • Ghuysen JM, Charlier P, Coyette J, et al. Penicillin and beyond: evolution, protein fold, multimodular polypeptides, and multiprotein complexes. Microb Drug Resist 1996;2:163-75
  • Goffin C, Ghuysen JM. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 1998;62:1079-93
  • Kotra LP, Mobashery S. β-lactam antibiotics, β-lactamases and bacterial resistance. Bull Inst Pasteur 1998;96:139-50
  • Knowles JR. Penicillin resistance: the chemistry of β-lactamase inhibition. Acc Chem Res 1985;18:97-104
  • Therrien C, Levesque RC. Molecular basis of antibiotic resistance and β-lactamase inhibition by mechanism-based inactivators: perspectives and future directions. FEMS Microbiol Rev 2000;24:251-62
  • Chambers HF. Methicillin-resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997;10:781-91
  • Klevins RM, Morrison MA, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007;298:1763-71
  • Mukhopadhyay S, Chakrabarti P. Altered permeability and β-lactam resistance in a mutant of Mycobacterium smegmatis. Antimicrob Agents Chemother 1997;41:1721-4
  • Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 2001;47:247-50
  • Babic M, Hujer AM, Bonomo RA. What's new in antibiotic resistance? Focus on β-lactamases. Drug Res Updates 2006;9:142-56
  • Adam D. β-lactam/β-lactamase inhibitor combinations in empiric management of pediatric infections. J Int Med Res 2002;30(Suppl 1):10A-19A
  • Adam D. β-lactam antibiotics: their role in the management of infections in children. Pediatr Infect Dis J 1998;17:S4-S7
  • Moosdeen F. Impact of β-lactamases on the clinical use of β-lactam antibiotics. In: Viewpoints in medicine, countering resistance due to β-lactamases. Worthing: Cambridge Medical Publications; 1996. p. 6-11
  • Moosdeen F. The evolution of resistance to cephalosporins. Clin Infect Dis 1997;24:487-93
  • Livermore DM. Bacterial resistance to carbapenems. Adv Exp Med Biol 1995;390:25-47
  • Rolinson GN. Evolution of β-lactamase inhibitors. Rev Infect Dis 1991;13:S727-32
  • Brown AG, Corbett DF, Eglington AJ, Howarth. Structures of olivanic acid derivatives MM 4550 and MM 13902;two new, fused β-lactams isolated from Streptomyces olivaceus. J Chem Soc Chem Commun 1977;523-5
  • Reading C, Cole M. Clavulanic acid: a β-lactamase inhibiting β-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 1977;11:852-857
  • Wildfeuer A, Rader K. Stability of β-lactamase inhibitors and β-lactam antibiotics in parenteral dosage forms and in body fluids and tissue homogenates: a comparative study of sulbactam, clavulanic acid, ampicillin and amoxicillin. Int J Antimicrob Agents 1996;6:S31
  • Grimm H. Comparative in vitro studies on the β-lactamase-inhibiting effect of clavulanic acid and sulbactam on ampicillin-resistant Enterobacteriaceae. Int J Antimicrob Agents 1996;6:S9
  • Lee N, Yuen KY, Kumana CR. Clinical role of β-lactam/β-lactamase inhibitor combinations. Drugs 2003;63:1511-24
  • Buynak JD. Understanding the longevity of the β-lactam antibiotics and of antibiotic/β-lactamase inhibitor combinations. Biochem Pharmacol 2006;71:930-40
  • Martinez JL, Vicente MF, Delgado-Iribarren A, et al. Small plasmids are involved in amoxicillin-clavulanate resistance in Escherichia coli. Antimicrob Agents Chemother 1989;33:595
  • Wu PJ, Shannon K, Phillips I. Effect of hyperproduction of TEM-1 β-lactamase on in vitro susceptibility of Escherichiacoli to β-lactam antibiotics. Antimicrob Agents Chemother 1994;38:494-8
  • Wu PJ, Shannon K, Phillips I. Mechanisms of hyperproduction of TEM-1 β-lactamase by clinical isolates of Escherichia coli. J Antimicrob Chemother 1995;36:927-39
  • Reguera JA, Baquero F, Perez-Diaz JC, Martinez JL. Factors determining resistance to β-lactam combined with blactamase inhibitors in Escherichia coli. J Antimicrob Chemother 1991;27:569-75
  • Bonomo RA, Rice LB. Inhibitor resistant class A β-lactamases. Front Biosci 1999;4:34-41
  • Nicolas-Chanoine MH. Inhibitor-resistant β-lactamases. J Antimicrob Chemother 1997;40:1-3
  • Chaibi EB, Sirot D, Paul G, Labia R. Inhibitor-resistant TEM β-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother 1999;43:447-58
  • Yang Y, Rasumussen BA, Shlaes DM. Class A β-lactamases: enzyme-inhibitor interactions and resistance. Pharmacol Ther 1999;83:141-51
  • Yoshimura F, Nikaido H. Diffusion of β-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 1985;27:84-92
  • Hakimelahi GH, Shia K, Xue C, et al. Design, synthesis, and biological evaluation of a series of β-lactam-based prodrugs. Bioorg Med Chem 2002;10:3489-98
  • Kazmierczak A, Cordin X, Jduez JM, et al. Differences between clavulanic acid and sulbactam in induction and inhibition of cephalosporinases in enterobacteria. J Int Med Res 1990;18:D67-77
  • Livermore DM, Akova M, Wu PJ, Yang YJ. Clavulanate and β-lactamase induction. J Antimicrob Chemother 1989;24(Suppl B):23-33
  • Li Q, Lee JY, Castillo R, et al. NB2001, a novel antibacterial agent with broad-spectrum activity and enhanced potency against β-lactamase-producing strains. Antimicrob Agents Chemother 2002;46:1262-8
  • Stone GW, Zhang Q, Castillo R, et al. Mechanism of action of NB2001 and NB2030, novel antibacterial agents activated by β-lactamases. Antimicrob Agents Chemother 2004;48:477-83
  • Wang Y, Lambart P, Zhao L, Wang D. Synthesis and antibacterial activity of dual-action agents of a β-lactam antibiotic with cytotoxic agent mitozolomide or temozolomide. Eur J Med Chem 2002;37:323-32
  • Hakimelahi GH, Moosavi-Movahedi AK, Saboury AA, et al. Carbapenem-based prodrugs. Design, synthesis, and biological evaluation of carbapenems. Eur J Med Chem 2005;40:339-49
  • Carryn S, Chanteux H, Seral C, et al. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin N Am 2003;17:615-34
  • Carryn S, Van Bambeke F, Mingoet-Leclercq MP, Tulkens PM. Activity of beta-lactams (ampicillin, meropenem), gentamicin, azithromycin and moxifloxacin against intracellular Listeria monocytogenes in a 24 h THP-1 human macrophage model. J Antimicrob Chemother 2003;51:1051-2
  • Lemaire S, Van Bambeke F, Mingoet-Leclercq MP, Tulkens PM. Activity of three β-lactams (entrapenem, meropenem and ampicillin) against intraphagocytic Listeria monocytogenes and Staphylococcus aureus. J Antimicrob Chemother 2005;55:897-904
  • Lemaire S, Bambeke FV, Mingeot-Leclercq MP, et al. Carbapenems are active against intracellular MRSA [abstract A-1832]. 45th Intersci Conf Antimicrob Agents Chemother. American Society for Microbiology, Washington, DC; 2005
  • Lemaire S, Van Bambeke F, Mingoet-Leclercq MP, et al. Role of acidic pH in the susceptibility of intraphagocytic methicillin-resistant Staphylococcus aureus strains to meropenem and cloxacillin. Antimicrob Agents Chemother 2007;51:1627-32
  • Chanteux H, Mingoet-Leclercq MP, Sonoveaux E, et al. Intracellular accumulation and activity of ampicillin used as free drug and as its phthalimidomethyl or pivaloyloxymethyl ester (pivampicillin) against Listeria monocytogenes in J774 macrophages. J Antimicrob Chemother 2003;52:610-5
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303:1818-1822
  • Soppimath KS, Aminabhavi TM, Kulkami AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1-20
  • Ravi Kumar MNV. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 2000;3:234-58
  • Williams J, Lansdown R, Sweitzer R, et al. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. J Control Release 2003;91:167-72
  • Fernandez-Urrusuno R, Fattal E, Rodrigues JM, et al. Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. J Biomed Mater Res 1996;31:401-8
  • Lobenberg R, Kreuter J. Macrophage targeting of azidothymidine:a promising strategy for AIDS therapy. AIDS Res Hum Retroviruses 1996;12:1709-15
  • Reilly RM, Sandhu J, Alvarez-Diez TM, et al. Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet 1995;28:126-42
  • Chun L. Poly(L-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev 2002;54:695-713
  • Elizabeth R, Gillies J, Frechet MJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005;10:35-43
  • Huwyler J, Wu D, Paradridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996;93:14164-9
  • Uekama K, Otagiri M. Cyclodextrins in drug carrier systems Crit Rev Ther Drug Carrier Syst 1987;3:1-40
  • Venier-Julienne MC, Benoit JP. Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv 1996;71:121-8
  • Risbud MV, Hardikar AA, Bhat SV, Bhode RR. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 2000;68:23-30
  • Martens PJ, Bryant SJ, Anseth KS. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 2003;4:283-92
  • Changez M, Koul V, Dinda AK. Efficacy of antibiotics-loaded interpenetrating network (IPNs) hydrogel based on poly(acrylic acid) and gelatin for treatment of experimental osteomyelitis: in vivo study. Biomaterials 2005;26:2095-104
  • Kreuter J. Nanoparticle-based drug delivery systems. J Control Release 1991;16:169-76
  • Couvreur P, Fattal E, Alphandary H, et al. Intracellular targeting of antibiotics by means of biodegradable nanoparticles. J Control Release 1992;19:259-67
  • Jani P, Halbert W, Langridge J, Florence AT. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 1989;41:809-12
  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2006;2:8-21
  • Kuo PL, Turro NJ, Tseng CH, et al. Photoinitiated polymerization of styrene in microemulsions. Macromolecules 1987;20:1216-21
  • Huguette PA, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 2000;13:155-68
  • Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 1990;42:821-6
  • Jani P, Halbert GW, Langridge J, Florence AT. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 1989;41:809-12
  • Cui Z, Mumper RJ. The effect of co-administration of adjuvants with a nanoparticle-based genetic vaccine delivery system on the resulting immune responses. Eur J Pharm Biopharm 2003;55:11-8
  • Kreuter J, Speiser PP. New adjuvants on a poly(methyl methacrylate) base. Infect Immun 1976;13:204-10
  • Couvreur P, Kante B, Roland M, et al. Polycyano acrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 1979;31:331-2
  • Vauthier C, Dubernet C, Fattal E, et al. Poly(alkyl cyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 2003;55:519-48
  • Velaga SP, Ghaderi R, Carlfors J. Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process. Int J Pharm 2002;231:155-66
  • Cavallaro GM, Fresta G, Giammona G, Villari PA. Entrapment of β-lactams antibiotics in polyethylcyanoacrylate nanoparticles: studies on the possible in vivo application of this colloidal delivery system. Int J Pharm 1994;111:31-41
  • Fattal E, Youssef M, Couvreur P, Andremont A. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother 1989;33:1540-3
  • Balland O, Pinto-Alphandary H, Viron A, et al. Intracellular distribution of ampicillin in murine macrophages infected with Salmonella typhimurium and treated with (3H)ampicillin-loaded nanoparticles J Antimicrob Chemother 1996;37:105-15
  • Fontana G, Pitarresi G, Tomarchio V, et al. Preparation, characterization and in vitro antimicrobial activity of ampicillin-loaded poly(ethyl cyanoacrylate) nanoparticles. Biomaterials 1998;19:1009-17
  • Fontana G, Licciardi M, Mansueto S, et al. Amoxicillin-loaded poly(ethyl cyanoacrylate) nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 2001;22:2857-65
  • Turos E, Reddy GSK, Greenhalgh K, et al. Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA. Bioorg Med Chem Lett 2007;17:3468-72
  • Diilen K, Weyenberg Vandervoort J, Ludwig A. The influence of the use of viscosifying agents as dispersion media on the drug release properties from PLGA nanoparticles. Eur J Pharm Biopharm 2004;58:539-49
  • Prior S, Gamazo C, Irache JM, et al. Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections. Int J Pharm 2000;196:115-25
  • Santos-Magalhaes NS, Pontes A, Pereira VMW, Caetano MNP. Colloidal carriers for benzathine penicillin G: nanoemulsions and nanocapsules. Int J Pharm 2000;208:71-80
  • Taton AT, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science 2000;289:1757-60
  • Prime KL, Whitesides GM. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 1991;252:1164-767
  • Diaz HVR, Batdorf KH, Fianchinin M, et al. Antimicrobial properties of highly fluorinated silver(I) tris(pyrazolyl)borates. J Inorg Biochem 2006;100:158-60
  • Balogh L, Swanson DR, Tomalia DA, et al. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 2001;1:18-21
  • Ramstedt M, Cheng N, Azzaroni O, et al. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications. Langmuir 2007;23:3314-21
  • Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 2007;24:2051-6
  • Dibrov P, Dzioba J, Gosink KK, Hase CC. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 2002;46:2668-70
  • Panacek A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006;110:16248-53
  • Li P, Li J, Wu C, et al. Synergic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 2005;16:1912-7
  • De Souza A, Mehta D, Leavitt RW. Bactericidal activity of combinations of silver-water dispersion with 19 antibiotics against seven microbial strains. Curr Sci 2006;91:926-9
  • Gu H, Ho PL, Tong E, et al. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 2003;3:1261-3
  • Tom RT, Suryanarayanan V, Reddy PG, et al. Ciprofloxacin-protected gold nanoparticles. Langmuir 2004;20:1909-14
  • Goodman CM, Mccusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004;15:897-900
  • Chen JF, Ding HM, Wang JX, Shao L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 2004;25:723-7
  • Yoshida T, Qin L, Linda AE, Masayori I. Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem 2006;281:17114-23
  • Raja SB, Murali MR, Devaraj SN. Differential expression of ompC and ompF in multidrug-resistant Shigella dysenteriae and Shigella flexneri by aqueous extract of Aegle marmelos, altering its susceptibility toward β-lactam antibiotics. Diagn Micro Infect Dis 2008; In press
  • Davies TA, Page MG, Shang W, et al. Binding of ceftobiprole and comparators to the penicillin-binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Antimicrob Agents Chemother 2007;51:2621-4
  • Lodisea TP, Patela N, Renaud-Mutarta A, et al. Pharmacokinetic and pharmacodynamic profile of ceftobiprole. Diagn Microb Infect Dis 2008; In press
  • Turos E, Konaklieva MI, Ren Rxf, et al. N-Thiolated bicyclic and monocyclic β-lactams. Tetrahedron 2000;56:5571-8
  • Turos E, Konaklieva MI, Coates C, et al. N-Thiolated β-lactams: novel antibacterial agents for methicillin-resistant Staphylococcus aureus. Bioorg Med Chem Lett 2002;12:2229-31
  • Turos E, Long TE, Heldreth B, et al. N-Thiolated β-lactams: a new family of anti-Bacillus agents. Bioorg Med Chem Lett 2006;16:2084-90
  • Revell KD, Heldreth B, Long TE, et al. N-thiolated β-lactams: studies on the mode of action and identification of a primary cellular target in Staphylococcus aureus. Bioorg Med Chem 2007;15:2453-67
  • Turos E, Shim JY, Wang Y, et al. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 2007;17:53-6
  • Abeylath SC, Turos E, Dickey S, Lim DV. Glyconanobiotics: novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis. Bioorg Med Chem 2007;16:2412-8
  • Fleming A. Penicillin. Nobel lecture; 11 December 1945
  • Harbarth S, Samore MH. Antimicrobial resistance determinants and controls. Emerg Infect Dis 2005;11:794-801
  • Lewis K. Persister cells, dormancy, and infectious disease. Nat Rev Microbiol 2007;5:48-56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.