118
Views
4
CrossRef citations to date
0
Altmetric
Review

Delivery strategies of melanoma vaccines: an overview

, PhD & , MD PhD
Pages 979-1001 | Published online: 29 Aug 2008

Bibliography

  • Choudhury A, Mosolits S, Kokhaei P, et al. Clinical results of vaccine therapy for cancer: learning from history for improving the future. Adv Cancer Res 2006;95:147-202
  • Terando AM, Faries MB, Morton DL. Vaccine therapy for melanoma: current status and future directions. Vaccine 2007;25S:B4-16
  • Lollini PL, Cavallo F, Nanni P, Forni G. Vaccines for tumor prevention. Nat Rev Cancer 2006;6:204-16
  • Bergman PJ, McKnight J, Novosad A, et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 2003;9(4):1284-90
  • Liao JC, Gregor P, Wolchok JD, et al. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun 2006;6:8-18
  • Bergman PJ, Camps-Palau MA, McKnight JA, et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 2006;24(21):4582-5
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10(9):909-15
  • Lizée G, Cantu MA, Hwu P. Less yin, more yang: confronting the barriers to cancer immunotherapy. Clin Cancer Res 2007;13(18):5250-5
  • Gamvrellis A, Leong D, Hanley JC, et al. Vaccines that facilitate antigen entry into dendritic cells. Immunol Cell Biol 2004;82:506-16
  • Casley-Smith JR, Reade PC. An electron microscopical study of the uptake of foreign particles by the livers of foetal and adult rats. Br J Exp Pathol 1965;46(5):473-80
  • Reade PC, Jenkin CR. The functional development of the reticulo-endothelial system. I. The uptake of intravenously injected particles by foetal rats. Immunology 1965;9(1):53-60
  • Kent R. Uptake of carbon particles by the RES of the fowl, the frog, and the chick embryo. J Reticuloendothel Soc 1966;3(3):271-93
  • White JG. Uptake by mononuclear phagocytes of protein-coated bentonite particles stabilized with a carbodiimide. J Immunol 1967;98(4):844-53
  • Gersten DM, Fogler WE, Fidler IJ. Quantitative analysis of macrophage phagocytosis by uptake of particulate 192iridium. J Immunol Methods 1977;17(3-4):349-59
  • Westwood FR, Longstaff E. Stimulation of cellular ingestion by basic proteins in vitro. Br J Cancer 1976;33(4):392-9
  • Paradisi F, D'Onofrio C, Pepe G, et al. Phagocytosis and cellular metabolism (a study on mouse and human macrophages in culture). Ric Clin Lab 1979;9(1):47-60
  • Gudewicz PW, Molnar J, Lai MZ, et al. Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages. J Cell Biol 1980;87(2 Pt 1):427-33
  • Dunn PA, Tyrer HW. Quantitation of neutrophil phagocytosis, using fluorescent latex beads. Correlation of microscopy and flow cytometry. J Lab Clin Med 1981;98(3):374-81
  • Pratten MK, Lloyd JB. Phagocytic uptake of latex beads by rat peritoneal macrophages: comparison of morphological and radiochemical assay methods. Biosci Rep 1984;4(6):497-504
  • Reis e Sousa C, Stahl PD, Austyn JM. Phagocytosis of antigens by Langerhans cells in vitro. J Exp Med 1993;178(2):509-19
  • Newman KD, Elamanchili P, Kwon GS, Samuel J. Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J Biomed Mater Res 2002;60(3):480-6
  • Martin MED, Dewar JB, Newman JFE. Polymerized serum albumin beads possessing slow release properties for use in vaccines. Vaccine 1988;6:33-8
  • O'Hagan DT, Palin K, Davis SS, et al. Microparticles as potentially orally active immunological adjuvants. Vaccine 1989;7:421-4
  • Tabata Y, Ikada Y. Effects of the size and surface charge of polymer microparticles on their phagocytosis by macrophages. Biomaterials 1988;9:356-62
  • Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995;267:243-6
  • Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: therapeutics and protective properties of nano-vaccines against tumor. J Immunol 2004;173:3148-54
  • Reilly RT, Emens LA, Jaffee EM. Humoral and cellular immune responses: independent forces or collaborators in the fight against cancer? Curr Opin Investig Drugs 2001;2(1):133-5
  • Lavi G, Voronov E, Dinarello CA, et al. Sustained delivery of IL-1Ra from biodegradable microspheres reduces the number of murine B16 melanoma lung metastases. J Control Release 2007;123:123-30
  • Solbrig CM, Saucier-Sawyer JK, Cody V, et al. Polymer nanoparticles for immunotherapy from encapsulated tumor-associated antigens and whole tumor cells. Mol Pharm 2007;4(1):47-57
  • Kovacsovics-Bankowski M, Rock KL. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci USA 1993;90:4942-6
  • Harding CV, Rui S. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J Immunol 1994;153:4925-33
  • Shen H, Ackerman AL, Cody V, et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006;117:78-88
  • Bevan MJ. Antigen recognition: class discrimination I the world of immunology. Nature 1987;325:192-4
  • Shen Z, Reznikoff G, Dranoff G, Rock KL. Cloned dendritic cells can present exogenous antigen on both MHC class I and II molecules. J Immunol 1997;158:2723 -30
  • Jones DH, Patridos CD, Steward MW, Farrar GH. Oral delivery of poly (lactic-co-glycolide) encapsulated vaccines. Behring Inst Mitt 1997;98:220-8
  • Partridos CD, Vohra P, Jones D, et al. CTL reponses induced by a single immunization with peptide encapsulated in biodegradable microparticles. J Immunol Methods 1997;206:1143-51
  • Patridos CD, Vohra Pramila, Jones DH, et al. Induction of cytotoxic T-cell response following oral immunization with synthetic peptides encapsulated in PLG microparticles. J Control Release 1999;62:325-32
  • Shinoda H, Asou Y, Suetsugu A, Tanaka K. Synthesis and characterization of amphiphilic biodegradable copolymer, poly (aspartic-co-lactic acid). Macromol Biosci 2003;3:34-43
  • Hara K, Tsuijimoto H, Huang CC, et al. The effect of poly (aspartic acid-co-lactic acid) nanospheres on the lung metastasis of B16BL6 melanoma cells by intravenous administration. Oncol Rep 2006;16:1215-20
  • Rhines LD, Sampath P, DiMeco F, et al. Local immunotherapy with interleukin-2 delivered from biodegradable polymer microspheres combined with interstitial chemotherapy: a novel treatment for experimental malignant glioma. Neutosurgery 2003;52(4):872-80
  • Sun H, Pan H, Yanf Z, Shi M. The immune response and protective efficacy of vaccination with oral microparticle Aeromonas sobria vaccine in mice. Int Immunopharmocol 2007;7:1259-64
  • Mittal SK, Aggarwal N, Sailaja G, et al. Immunization with DNA, adenovirus or both in biodegradable alginate microspheres: effect of route of inoculation on immune response. Vaccine 2001;19:253-63
  • Sukow MA, Jarvinen LZ, HogenEsch H, et al. Immunization of rabbits against a bacterial pathogen with an alginate microparticle vaccine. J Control Release 2002;85:227-35
  • Mutwiri G, Bowersock T, Kidane A, et al. Induction of mucosal immune responses following enteric immunization with antigen delivered in alginate microspheres. Vet Immunol Immunopathol 2002;87:269-76
  • Brubaker JO, MacArtney KK, Speakers TJ, Offit PA. Specific attachment of aqueous-based microcapsules to macrophages, B cells and dendritic cells in vitro. J Microencapsul 2002;19(20):213-23
  • Li YH, Fan MW, Bian Z, et al. Chitosan-DNA microparticles as mucosal delivery system: synthesis, characterization and release in vitro. Chin Med J (Engl) 2005;118(11):936-41
  • Zhang H, Cheng C, Zheng M, et al. Enhancement of immunity to an Escherichia coli vaccine in mice orally inoculated with a fusion gene encoding porcine interleukin 4 and 6. Vaccine 2007;25(41):7094-101
  • Jiang L, Qian F, He X, et al. Novel chitosan derivative nanoparticles enhance the immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice. J Gene Med 2007;9(4):253-64
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier–systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces 2007;59(1):24-34
  • Dass CR, Contreras KG, Dunstan DE, Choong PF. Chitosan microparticles encapsulating PEDF plasmid demonstrate efficacy in an orthotopic metastatic model of osteosarcoma. Biomaterials 2007;28(19):3026-33
  • Zhou X, Zhang X, Yu X, et al. The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine. Biomaterials 2008;29(1):111-7
  • Rakhmilevich AL, Imboden M, Hao Z, et al. Effective particle-mediated vaccination against mouse melanoma by coadministration of plasmid DNA encoding gp100 and granulocyte-acrophage colony-stimulating factor. Clin Cancer Res 2001;7:952-61
  • Cassaday RD, Sondel PM, King DM, et al. A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin Cancer Res 2007;13(2 Pt 1):540-9
  • Alving CR. Liposomes as carriers of antigens and adjuvants. J Immunol Methods 1991;140:1-13
  • Alving CR, Koulchin V, Glenn GM, Rao M. Liposomes as carriers of peptide antigens: induction of antibodies and cytotoxic T lymphocytes to conjugated and unconjugated peptides. Immunol Rev 1995;145:5-31
  • Patel GB, Chen W. Archaeosome immunostimulatory vaccine delivery system. Curr Drug Deliv 2005;2(4):407-21
  • Yewdell JW, Norbuty CC, Bennink JR. Mechanism of exogenous antigen presentation by MHC I molecules in vitro and in vivo: Implications for generating CD8+ T-cell response to infectious agents, tumors, transplants and vaccines. Adv Immunol 1999;73:1-77
  • Nakanishi T, Hayashi A, Kunisawa J, et al. Fusogenic liposomes efficiently deliver exogeneous antigen through the cytoplasm into the MHC Class I processing pathway. Eur J Immunol 2000;30:1740-7
  • Kunisawa J, Nakanishi T, Takahashi I. Sendai virus fusion protein mediates simultaneous induction of MHC ClassI/II dependent mucosal and system immune response via the nasopharyngeal-associated lymphoreticular tissue immune system. J Immunol 2001;167:1406-12
  • Yoshikawa T, Imazu S, Gao JQ, et al. Augmentation of antigen-specific immune response using DNA fusogenic liposome vaccine. Biophys Res Commun 2004;325:500-5
  • Yoshikawa T, Okada N, Tsujino M, et al. Vaccine efficacy of fusogenic liposomes containing tumor cell-lysate against murine B16BL6 melanoma. Biol Pharm Bull 2006;29(1):100-4
  • Jerome V, Graser A, Muller R, et al. Cytotoxic T lymphocytes responding to low dose TRP2 antigen are induced against B16 melanoma by liposome encapsulated TRP2 peptide and CpG DNA adjuvant. J Immunother 2006;29(3):294-305
  • Bloom MB, Perry-Lalley D, Robbin PF, et al. Identification of tyrosinase-related protein 2 as tumor rejection antigen for B16 melanoma. J Exp Med 1997;185(3):453-9
  • Zeh HJ, Perry-Lalley D, Dudley ME, et al. High avidity CTLs for two self-antigens demonstrated superior in vitro and in vivo antitumor efficacy. J Immunol 1999;162(2):989-94
  • Lu Y, Kawakami S, Yamashita F, Hashida M. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials 2007;28:3255-62
  • Zaks K, Jordan M, Guth A, et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 and TLR9 agonist complexed to cationic liposomes. J Immunol 2006;176(12):7335-45
  • Krieg AM, Yi AK, Hartmann G. Mechanisms and therapeutic applications of immune stimulatory CpG DNA. Pharmacol Ther 1999;84:113-20
  • Wagner H, Hacker H, Lipford GB. Immunostimulatory DNA sequences help to eradicate intracellular pathogens. Springer Semin Immunopathol 2000;22:147-52
  • Klinman DM, Kamstrup S, Verthelyi D, et al. Activation of innate immune system by CpG oligonucleotides: immunoprotective activity and safety. Springer Semin Immunopathol 2000;22:173-83
  • McCluskie MJ, Weeratna RD, Davis HL. The role of CpG in DNA vaccines. Springer Semin Immunopathol 2000;22:125-32
  • Chu RS, Targoni OS, Kreig AM, et al. CpG oligonucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 1997;186:1623-36
  • Brazolot Millan CL, Weeretha R, Krieg AM, et al. CpG DNA can induce strong Th1 humoral and cell-mediated immune response against hepatitis B surface antigen in young mice. Proc Natl Acad Sci USA 1998;95:15553-8
  • Bauer S, Kirschning CJ, Hacker H, et al. Human TRL9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001;98(16):9237-42
  • Tighe H, Takabayashi K, Schwartz D, et al. Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Clin Immunol 2000;106(1 Pt 1):124-34
  • Cho HJ, Takabayashi K, Cheng PM, et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotech 2000;18:509-14
  • Shirota H, Sano K, Kikuchi T, et al. Regulation of murine airway eosinophilia and Th2 cells by antigen-conjugated CpG oligonucleotides as novel antigen- specific immunomodulator. J Immunol 2000;164:5575-82
  • Gursel I, Gursel M, Ishii KJ, Klinman DM. Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J Immunol 2001;167:3324-8
  • Li WM, Bally MB, Schutze-Redelmeier MP. Enhanced immune response to T-independent antigen by using CpG oligonucleotides encapsulated in liposomes. Vaccine 2001;20:148-57
  • Li WM, Dragowska WH, Bally MB, Schutze-Redelmeier MP. Effective induction of CD8+ T-cell response using CpG oligonucluotides and HER-2/neu-derived peptide co-encapsulated in liposomes. Vaccine 2003;21:3319-29
  • Mansour M, Pohajdak B, Kast WM, et al. Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax®. J Transl Med 2007;5:20
  • Daftarian P, Mansour M, Benoit AC, et al. Eradication of established HPV 16-expressing tumors by a single administration of vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine 2006;24(24):5235-44
  • Hilleman MR. Critical appraisal of emulsified oil adjuvants applied to viral vaccines. Prog Med Virol 1966;8:131-82
  • Henle W, Henle G. The toxicity of influenza viruses. Science 1945;102(2651):398-400
  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol 2000;2:151-5
  • Srivastava PK. Therapeutic cancer vaccines. Curr Opin Immunol 2006;18:201-5
  • Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 1993;178:1391-6
  • Geng H, Zhang GM, Xiao H, et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 2006;118(11):2657-64
  • Park JE, Facciponte J, Chen X, et al. Chaperoning function of stress protein grp170, a member of the hsp70 superfamily, is responsible for its immunoadjuvant activity. Cancer Res 2006;66:1161-8
  • Zhang Y, Zan Y, Shan M, et al. Effects of heat shock protein gp96 on human dendritic cell maturation and CTL expansion. Biochem Biophys Res Commun 2006;344:581-7
  • Peter I, Mezzacasa A, LeDonne P, et al. Comparative analysis of immunocritical melanoma markers in the mouse melanoma cell lines B16, K1735 and S91-M3. Melanoma Res 2001;11:21-30
  • Seliger B, Wollscheid U, Momburg F, et al. Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res 2001;61:1095-9
  • McNeela EA, Mills KHG. Manipulating the immune system: humoral versus cell-mediated immunity. Adv Drug Deliv Rev 2001;51:43-54
  • Speiser DE, Liénard D, Rufer N, et al. Rapid and strong human CD8+ T-cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 2005;115(3):739-46
  • Prins RM, Craft N, Bruhn KW, et al. The TLR-7 agonist, Imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T-cell priming: relation to central nervous system antitumor immunity. J Immunol 2006;176:157-63
  • Sosman JA, Unger JM, Liu PY, et al.; for the Southwest Oncology Group. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: Impact of HLA class I antigen expression on outcome. J Clin Oncol 2002;20:2067-75
  • Wheeler AW, Marshall JS, Ulrich JT. A Th1-inducing adjuvant, MPL®, enhances antibody profiles in Exp Anim. Suggesting it has the potential to improve the efficacy of allergy vaccines. Int Arch Allergy Immunol 2001;126:135-9
  • Xiao L, Rafi-Janajreh A, Patterson P, et al. Adjuvants and malaria vaccine development. In: Perlmann P, Troye-Blomberg M, editors, Malaria immunology. Basel: Karger. Chem Immunol 2002;80:343-65
  • Alonso PL, Sacarlal J, Aponte JJ, et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet 2004;364:1411-20
  • Harper DM, Franco EL, Wheeler C, et al.; HPV Vaccine Study Group. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 2004;364:1757-65
  • Stanberry LR, Sprunance SL, Cunningham AL, et al.; Herpes Vaccine Efficacy Study Group. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med 2002;347(21):1652-61
  • Johnston D, Bystryn JC. Effect of cell wall skeleton and monophosphoryl lipid A adjuvant on the immunogenicity of a murine B16 melanoma vaccine. J Natl Cancer Inst 1991;83(17):1240-5
  • Schultz N, Oratz R, Chen D, et al. Effect of DETOX as an adjuvant for melanoma vaccine. Vaccine 1995;13(5):503-8
  • Ferrone CR, Perales MA, Goldberg SM, et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin Cancer Res 2006;12(18):5511-8
  • Hamid O, Solomon JC, Scotland R, et al. Alum with interleukin-12 augments immunity to a melanoma peptide vaccine: correlation with time to relapse in patients with resected high-risk disease. Clin Cancer Res 2007;13(1):215-22
  • Overwijk WW, de Visser KE, Tirion FH, et al. Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant. J Immunol 2006;176:5213-22
  • Aldovini A, Young RA. Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature 1991;351:479-82
  • Strover CK, de la Cruz VF, Fuerst TR, et al. New use of BCG for recombinant vaccines. Nature 1991;351:456-60
  • Berd D, Maguire HC Jr, McCue P, Mastrangelo MJ. Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64patients. J Clin Oncol 1990;8:I858-67
  • Elias EG, Tomazic VJ, Buda BS. Adjuvant immunotherapy on melanoma: a new approach. J Surg Oncol 1992;50:144-8
  • Hsueh EC, Nathanson L, Foshag LJ, et al. Active specific immunotherapy with polyvalent melanoma cell vaccine for patients with in-transit melanoma metastases. Cancer 1999;85:2160-9
  • Morton DL, Hsueh EC, Essner R, et al. Prolonged survival of patients receiving active immunotherapy with canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg 2002;236(4):438-49
  • Hsueh EC, Essner R, Foshag LJ, et al. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 2002;20:4549-54
  • Cascinelli N, Rümke P, MacKie R, et al. The significance of conversion of skin reactivity to efficacy of bacillus Calmette-Guerin (BCG) vaccinations given immediately after radical surgery in stage II melanoma patients. Cancer Immunol Immunother 1989;28(4):282-6
  • Barth A, Morton DL. The role of adjuvant therapy in melanoma management. Cancer 1995;75(2 Suppl):726-34
  • Duda RB, Yang H, Dooley DD and Abu-Jawdeh G. Recombinant BCG therapy suppresses melanoma tumor growth. Annals of Surgical Oncology 1995:2(6):542-9
  • Patterson AHG, Willans DJ, Jerry LM, et al. Adjuvant BCG immunotherapy for malignant melanoma. Can Med Assoc J 1984;131:744-8
  • Agarwala SS, Neuberg D, Park Y, Kirkwood JM. Mature results of a phase III randomized trial of Bacillus Calmette–Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer Stage I – III Melanoma (E1673) A Trial of the Eastern Cooperative Oncology Group. Cancer 2004;100:1692-8
  • Agarwala S, Kirkwood J. Interferons and adjuvant therapy. In: Balch CM, Blackwell PM, Houghton AN, editors, Cutaneous melanoma. 4th edition. St. Louis. Quality Medical Publishing; 2003. p. 605-22
  • Traquina P, Morandi M, Contorni M, Van Nest G. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J Infect Dis 1996;174(6):1168-75
  • Lewis DJ, Eiden JE, Goilav C, et al. Rapid and frequent induction of protective immunity exceeding UK recommendations for healthcare settings by MF59-adjuvated hepatitis B vaccine. Commun Dis Public Health 2003;6(4):320-4
  • Podda A, Del Giudice G. MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev Vaccines 2003;2(2):197-203
  • Wang F, Bade E, Kuniyoshi C, et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freud's adjuvant for resected high risk melanoma. Clin Cancer Res 1999;5(10):2756-65
  • Tanaka S, Harada M, Mine T, et al. Peptides vaccination for patients with melanoma and other types of cancer based on pre-existing peptide-specific cytotoxic T-lymphocyte precursors in the periphery. J Immunother 2003;26(4):357-66
  • Khong HT, Yang JC, Topalian SL, et al. Immunization of HLA-A*0201 and/or HLA-DPbeta*04 with patients with metastatic melanoma using epitopes from the NY-ESO-1 antigen. J Immunother 2004;27(6):427-7
  • Bettinotti MP, Panelli MC, Ruppe E, et al. Clinical and immunological evaluation of patients with metastatic melanoma undergoing immunization with the HLA-Cw*0702-associated epitope MAGE-A12:170-178. Int J Cancer 2003;1052:210-6
  • Bateman A, Bullough F, Murphy S, et al. Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res 2000;60:1492-7
  • Errington F, Bateman A, Kottke T, et al. Allogeneic tumor cells expressing fusogenic membrane glycoproteins as a platform for clinical cancer immunotherapy. Clin Cancer Res 2006;12(4):1333-41
  • Linardakis E, Bateman A, Phan V, et al. Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell-tumor cell fusion. Cancer Res 2002;62(19):5495-504
  • Lu HH, Alexander L, Wimmer E. Construction and genetic analysis of dicistronic polioviruses containing open reading frames for epitopes of human immunodeficiency virus type1 gp120. J Virol 1995;69(8):4797-806
  • Mandl S, Sigal LJ, Rock KL, Andino R. Poliovirus vaccine vectors elicit antigen-specific cytotoxic T-cells and protect mice against lethal challenge with malignant melanoma cells expressing a model antigen. Proc Natl Acad Sci USA 1998;95(14):8216-21
  • Leitner WW, Bergmann-Leitner ES, Hwang LN, Restifo NP. Type I Interferons are essential for the efficacy of replicase-based DNA vaccines. Vaccine 2006;24(24):5110-8
  • Goldberg SM, Bartido SM, Gardner JP, et al. Comparison of two cancer vaccines targeting tyrosinase: plasmid DNA and recombinant alphavirus replicon particles. Clin Cancer Res 2005;11(22):8114-21
  • Leitner WW, Hwang LN, Bergmann-Leitner ES, et al. Apoptosis is essential for the increased efficacy of alphaviral replicase-based DNA vaccines. Vaccine 2004;22(11-12):1537-44
  • Leitner WW, Hwang LN, deVeer MJ, et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 2003;9(1):33-9
  • Tormo D, Ferrer A, Bosch P, et al. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res 2006;66(10):5427-35
  • Jiang HR, Gilham DE, Mulryan K, et al. Combination of vaccination and chimeric receptor expressing T-cells provides improved active therapy of tumors. J Immunol 2006;177(7):4288-98
  • De Palma R, Marigo I, Del Galdo F, et al. Therapeutic effectiveness of recombinant cancer vaccines is associated with a prevalent T-cell receptor alpha usage by melanoma-specific CD8+ T lymphocytes. Cancer Res 2004;64(21):8068-76
  • Leitch J, Fraser K, Lane C, et al. CTL-dependent and -independent antitumor immunity is determined by the tumor not the vaccine. J Immunol 2004;172(9):5200-5
  • Huang XF, Ren W, Rollins L, et al. A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res 2003;63(21):7321-9
  • Tatsumi T, Kierstead LS, Ranieri E, et al. MAGE-6 encodes HLA-DRbeta1*0401-presented epitopes recognized by CD4+ T-cells from patients with melanoma or renal cell carcinoma. Clin Cancer Res 2003;9(3):947-54
  • Steitz J, Brück J, Knop J, Tüting T. Adenovirus-transduced dendritic cells stimulate cellular immunity to melanoma via a CD4(+) T-cell-dependent mechanism. Gene Ther 2001;8(16):1255-63
  • Wan Y, Bramson J, Pilon A, et al. Genetically modified dendritic cells prime autoreactive T-cells through a pathway independent of CD40L and interleukin 12: implications for cancer vaccines. Cancer Res 2000;6012:3247-53
  • Peter I, Nawrath M, Kamarashev J, et al. Immunotherapy for murine K1735 melanoma: combinatorial use of recombinant adenovirus expressing CD40L and other immunomodulators. Cancer Gene Ther 2002;9(7):597-605
  • Jäger E, Karbach J, Gnjatic S, et al. Identification of a naturally processed NY-ESO-1 peptide recognized by CD8+ T-cells in the context of HLA-B51. Cancer Immun 2002;19:2-12
  • Tuettenberg A, Jonuleit H, Tüting T, et al. Priming of T-cells with Ad-transduced DC followed by expansion with peptide-pulsed DC significantly enhances the induction of tumor-specific CD8+ T-cells: implications for an efficient vaccination strategy. Gene Ther 2003;10(3):243-50
  • Bonnekoh B, Greenhalgh DA, Chen SH, et al. Exvivo and in vivo adenovirus-mediated gene therapy strategies induce a systemic anti-tumor immune defense in the B16 melanoma model. J Invest Dermatol 1998;110(6):867-71
  • Rosenberg SA, Zhai Y, Yang JC, et al. Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J Natl Cancer Inst 1998;90(24):1894-900
  • Soiffer R, Hodi FS, Haluska F, et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003;21(17):3343-50
  • Hermans IF, Chong TW, Palmowski MJ, et al. Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res 2003;63(23):8408-13
  • Overwijk WW, Lee DS, Surman DR, et al. Vaccination with a recombinant vaccinia virus encoding a ‘self’ antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci USA 1999;96(6):2982-7
  • Mateo L, Gardner J, Chen Q, et al. An HLA-A2 polyepitope vaccine for melanoma immunotherapy. J Immunol 1999;163(7):4058-63
  • Di Nicola M, Carlo-Stella C, Mortarini R, et al. Boosting T-cell-mediated immunity to tyrosinase by vaccinia virus-transduced, CD34(+)-derived dendritic cell vaccination: a phase I trial in metastatic melanoma. Clin Cancer Res 2004;10(16):5381-90
  • Lindsey KR, Gritz L, Sherry R, et al. Evaluation of prime/boost regimens using recombinant poxvirus/tyrosinase vaccines for the treatment of patients with metastatic melanoma. Clin Cancer Res 2006;12(8):2526-37
  • Spaner DE, Astsaturov I, Vogel T, et al. Enhanced viral and tumor immunity with intranodal injection of canary pox viruses expressing the melanoma antigen, gp100. Cancer 2006;106(4):890-9
  • Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res 2003;9(8):2973-80
  • van Baren N, Bonnet MC, Dréno B, et al. Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T-cells. J Clin Oncol 2005;23(35):9008-21
  • Lonchay C, van der Bruggen P, Connerotte T, et al. Correlation between tumor regression and T-cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad Sci USA 2004;101(Suppl 2):14631-8
  • Karanikas V, Lurquin C, Colau D, et al. Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus. J Immunol 2003;171(9):4898-904
  • Astsaturov I, Petrella T, Bagriacik EU, et al. Amplification of virus-induced antimelanoma T-cell reactivity by high-dose interferon-alpha2b: implications for cancer vaccines. Clin Cancer Res 2003;9(12):4347-55
  • Prabakaran I, Menon C, Xu S, et al. Mature CD83(+) dendritic cells infected with recombinant gp100 vaccinia virus stimulate potent antimelanoma T-cells. Ann Surg Oncol 2002;9(4):411-8
  • Motta I, André F, Lim A, et al. Cross-presentation by dendritic cells of tumor antigen expressed in apoptotic recombinant canarypox virus-infected dendritic cells. J Immunol 2001;167(3):1795-802
  • Smith CL, Mirza F, Pasquetto V, et al. Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J Immunol 2005;175(12):8431-7
  • Hersey P, Coates AS, McCarthy WH, et al. Adjuvant immunotherapy of patients with high-risk melanoma using vaccinia viral lysates of melanoma: results of a randomized trial. J Clin Oncol 2002;20(20):4181-90
  • Wallack MK, Sivanandham M, Balch CM, et al. A phase III randomized, double-blind multi-institutional trial of vaccinia melanoma oncolysate-active specific immunotherapy for patients with stage II melanoma. Cancer 1995;75(1):34-42
  • Ferrone CR, Perales MA, Goldberg SM, et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin Cancer Res 2006;12(18):5511-9
  • Liu R, Zhou C, Wang D, et al. Enhancement of DNA vaccine potency by sandwiching antigen-coding gene between secondary lymphoid tissue chemokine (SLC) and IgG Fc fragment genes. Cancer Biol Ther 2006;5(4):427-34
  • Goldberg SM, Bartido SM, Gardner JP, et al. Comparison of two cancer vaccines targeting tyrosinase: plasmid DNA and recombinant alphavirus replicon particles. Clin Cancer Res 2005;11(22):8114-21
  • Liu M, Acres B, Balloul JM, et al. Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci USA 2004;101(Suppl 2):14567-71 [Epub 2004 Aug 27]
  • Bronte V, Cingarlini S, Apolloni E, et al. Effective genetic vaccination with a widely shared endogenous retroviral tumor antigen requires CD40 stimulation during tumor rejection phase. J Immunol 2003;171(12):6396-405
  • Rosenberg SA, Yang JC, Sherry RM, et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum Gene Ther 2003;14(8):709-14
  • Kalat M, Küpcü Z, Schüller S, et al. In Vivo plasmid electroporation induces tumor antigen-specific CD8+ T-cell responses and delays tumor growth in a syngeneic mouse melanoma model. Cancer Res 2002;62(19):5489-94
  • Nawrath M, Pavlovic J, Moelling K. Synergistic effect of a combined DNA and peptide vaccine against gp100 in a malignant melanoma mouse model. J Mol Med 2001;79(2-3):133-42
  • Schultz J, Heinzerling L, Pavlovic J, Moelling K. Induction of long-lasting cytokine effect by injection of IL-12 encoding plasmid DNA. Cancer Gene Ther 2000;7(12):1557-65
  • Zhou WZ, Kaneda Y, Huang S, et al. Protective immunization against melanoma by gp100 DNA-HVJ-liposome vaccine. Gene Ther 1999;6(10):1768-73
  • Tüting T, Gambotto A, DeLeo A, et al. Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. Cancer Gene Ther 1999;6(1):73-80
  • Schreurs MW, de Boer AJ, Figdor CG, Adema GJ. Genetic vaccination against the melanocyte lineage-specific antigen gp100 induces cytotoxic T lymphocyte-mediated tumor protection. Cancer Res 1998;58(12):2509-14
  • Tüting T, Wilson CC, Martin DM, et al. Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T-cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. J Immunol 1998;160(3):1139-47
  • Bramson J, Dayball K, Evelegh C, et al. Enabling topical immunization via microporation: a novel method for pain-free and needle-free delivery of adenovirus-based vaccines. Gene Ther 2003;10(3):251-60
  • Itoh T, Celis E. Transcutaneous immunization with cytotoxic T-cell peptide epitopes provides effective antitumor immunity in mice. J Immunother 2005;28(5):430-7
  • Soiffer R, Hodi FS, Haluska F, et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003;21(17):3343-50
  • Schneeberger A, Lührs P, Kutil R, et al. Granulocyte-macrophage colony-stimulating factor-based melanoma cell vaccines immunize syngeneic and allogeneic recipients via host dendritic cells. J Immunol 2003;171(10):5180-7
  • Bedrosian I, Mick R, Xu S, et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 2003;21(20):3826-35
  • Sondak VK, Sosman JA. Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: Melacine. Semin Cancer Biol 2003;13:409-15
  • Rakhmilevich AL, Imboden M, Hao Z, et al. Effective particle-mediated vaccination against mouse melanoma by coadministration of plasmid DNA encoding Gp100 and granulocyte-macrophages colony-stimulating factor. Clin Cancer Res 2001;7:952-61
  • Tiwari SB, Pai RM, Udupa N. Temperature sensitive liposome of Plimbagin: characterization and in vitro evaluation in mice bearing melanoma B16F1. J Drug Target 2002;10(8):585-91
  • Van Broekhoven CL, Parish CR, Demangel C, et al. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 2004;64:4357-65
  • Singh M, O'Hagan DT. Recent advances in veterinary vaccine adjuvants. Int J Parasitol 2003;33:469-78
  • Angel J, Chaperot L, Molens JP, et al. Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells. Vaccine 2007;25(19):3913-21
  • Lesimple T, Neidhard EM, Vignard V, et al. Immunologic and clinical effects of injecting mature peptide-loaded dendritic cells by intralymphatic and intranodal routes in metastatic melanoma patients. Clin Cancer Res 2006;12(24):7380-8
  • Hunder NN, Wallen H, Cao J, et al. Treatment of metastatic melanoma with autologous CD4+ T-cells against NY-ESO-1. N Engl J Med 2008;358(25):2698-703
  • Heemskerk B, Liu K, Dudley ME, et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther 2008;19(5):496-510
  • Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008;8(4):299-308
  • Wang F, Bade E, Kuniyoshi C, et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freud's adjuvant for resected high-risk melanoma. Clin Cancer Res 1999;5(10):2756-65
  • Hsueh EC, Nathanson L, Foshag LJ, et al. Active specific immunotherapy with polyvalent melanoma cell vaccine for patients with in-transit melanoma metastases. Cancer 1999;85:2160-9
  • Scheibenbogen C, Schmittel A, Keilholz U, et al. Phase2 trial of vaccination with tyrosinase peptides and granulocyte-macrophage colony-stimulating factors in patients with metastatic melanoma. J Immunother 2000;23(2):275-81
  • Jager E, Gnjatic S, Nagata Y, et al. Induction of primary NY-ESO-1 immunity: CD8+ lymphocyte and antibody response in peptide-vaccinated patients with NY-ESO1+ cancers. Proc Natl Acad Sci USA 2000;97(22):12198-203
  • Morton DL, Hsueh EC, Essner R, et al. Prolonged survival of patients receiving active immunotherapy with canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg 2002;236(4):438-49
  • Hsueh EC, Essner R, Foshag LJ, et al. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 2002;20:4549-54
  • Sosman JA, Unger JM, Liu PY, et al.; for the Southwest Oncology Group. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J Clin Oncol 2002;20:2067-75
  • Slinguff CL, Petroni GR, Yamshchikov GV, et al. Clinical and immunological results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 2003;21(21):4016-26
  • Cebon J, Jager E, Shackleton MJ, et al. Two phase I studies of low dose recombinant human IL-12 with Melan-A and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun 2003;3:7
  • Tanaka S, Harada M, Mine T, et al. Peptides vaccination for patients with melanoma and other types of cancer based on pre-existing peptide-specific cytotoxic T-lymphocyte precursors in the periphery. J Immunother 2003;26(4):57-366
  • Bettinotti MP, Panelli MC, Ruppe E, et al. Clinical and immunological evaluation of patients with metastatic melanoma undergoing immunization with the HLA-Cw*0702-associated epitope MAGE-A12:170-178. Int J Cancer 2003;105(2):210-6
  • Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Recombinant fowlpox viruses encoding anchor-modified gp100 melanoma antigen can generate antitumor immune response in patients with metastatic melanoma. Clin Cancer Res 2003;9(8):2973-80
  • Davis ID, Chen W, Jackson H, et al. Recombinant NY-ESO-1 protein with ISOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T-cell response in humans. Proc Natl Acad Sci USA 2004;101(29):10679-702
  • Berd D, Sato T, Maguire HC, et al. Immunopharmacologic analysis of an autologous, hapten modified human melanoma vaccine. J Clin Oncol 2004;22:403-15
  • Khong HT, Yang JC, Topalian SL, et al. Immunization of HLA-A*0201 and/or HLA-DPbeta*04 with patients with metastatic melanoma using epitopes from the NY-ESO-1 antigen. J Immunother 2004;27(6):427-7
  • Singluff CL, Petroni GR, Yamshchikov GV, et al. Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low dose interleukine-2 administered either concurrently or on a delayed schedule. J Clin Oncol 2004;22(22):4474-85
  • Di Pucchio T, Pilla L, Capone I, et al. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp-100 peptides plus IFN-alpha results in activation of specific CD8+ T-cells and monocyte/dendritic cell precursor. Cancer Res 2006;66(9):4943-51
  • Hamid O, Solomon JC, Scotland R, et al. Alum with Interleukin-12 augments immunity to a melanoma peptide vaccine: correlation with time to relapse in patients with resected high-risk disease. Clin Cancer Res 2007;(13(1):215-22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.