657
Views
89
CrossRef citations to date
0
Altmetric
Reviews

Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls

Pages 887-905 | Published online: 12 Jun 2009

Bibliography

  • Ganapathy V, Ganapathy ME, Leibach FH. Intestinal transport of peptides and amino acids. In: Barrett KE, Donowitz M, editors, Gastrointestinal Transport. Molecular Physiology. San Diego: Academic Press Inc., 2001. p. 379-412
  • Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 2008;38:1022-42
  • Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2008;60:543-85
  • Terada T, Inui K. Peptide transporters: structure, function, regulation and application for drug delivery. Curr Drug Metab 2004;5:85-94
  • Ganapathy V, Leibach FH. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. J Biol Chem 1983;258:14189-92
  • Knütter I, Rubio-Aliaga I, Boll M, et al. H+ -peptide cotransport in the human bile duct epithelium cell line SK-ChA-1. Am J Physiol 2002;283:G222-9
  • Teuscher NS, Novotny A, Keep RF, Smith DE. Functional evidence for presence of PEPT2 in rat choroid plexus: studies with glycylsarcosine. J Pharmacol Exp Ther 2000;294:494-9
  • Groneberg DA, Nickolaus M, Springer J, et al. Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake. Am J Pathol 2001;158:707-14
  • Smith DE, Johanson CE, Keep RF. Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev 2004;56:1765-91
  • Fei YJ, Kanai Y, Nussberger S, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 1994;368:563-6
  • Boll M, Markovich D, Weber W-M, et al. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, ß-lactam antibiotics and ACE-inhibitors. Pflugers Arch 1994;429:146-9
  • Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 2004;447:610-8
  • Dantzig AH, Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim Biophys Acta 1990;1027:211-7
  • Brandsch M, Miyamoto Y, Ganapathy V, Leibach FH. Expression and protein kinase C-dependent regulation of peptide/H+ cotransport system in the Caco-2 human colon carcinoma cell line. Biochem J 1994;299:253-60
  • Brandsch M, Brandsch C, Prasad PD, et al. Identification of a renal cell line that constitutively expresses the kidney-specific high-affinity H+/peptide cotransporter. FASEB J 1995;9:1489-96
  • Rubio-Aliaga I, Frey I, Boll M, et al. Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney. Mol Cell Biol 2003;23:3247-52
  • Shen H, Smith DE, Keep RF, et al. Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. J Biol Chem 2003;278:4786-9
  • Ocheltree SM, Shen H, Hu Y, et al. Role and relevance of peptide transporter 2 (PEPT2) in the kidney and choroid plexus: in vivo studies with glycylsarcosine in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther 2005;315:240-7
  • Kamal MA, Keep RF, Smith DE. Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab Pharmacokinet 2008;23:236-42
  • Hu Y, Smith DE, Ma K, et al. Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine. Mol Pharm 2008;5:1122-30
  • Biegel A, Knütter I, Hartrodt B, et al. The renal type H+/peptide symporter PEPT2: structure-affinity relationships. Amino Acids 2006;31:137-56
  • Biegel A, Gebauer S, Hartrodt B, et al. Three-dimensional quantitative structure-activity relationship analyses of ß-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1. J Med Chem 2005;48:4410-9
  • Brandsch M, Thunecke F, Küllertz G, et al. Evidence for the absolute conformational specificity of the intestinal H+/peptide symporter, PEPT1. J Biol Chem 1998;273:3861-4
  • Meredith D, Boyd CA, Bronk JR, et al. 4-Aminomethylbenzoic acid is a non-translocated competitive inhibitor of the epithelial peptide transporter PepT1. J Physiol 1998;512:629-34
  • Nielsen CU, Andersen R, Brodin B, et al. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line. J Control Release 2001;76:129-38
  • Hidalgo IJ, Bhatnagar P, Lee CP, et al. Structural requirements for interaction with the oligopeptide transporter in Caco-2 cells. Pharm Res 1995;12:317-9
  • Tamura K, Lee C-P, Smith PL, Borchardt RT. Effect of charge on oligopeptide transporter-mediated permeation of cyclic dipeptides across Caco-2 cell monolayers. Pharm Res 1996;13:1752-4
  • Quay JF. Transport interaction of glycine and cephalexin in rat jejunum. Physiologist 1972;15:241
  • Addison JM, Burston D, Dalrymple JA, et al. A common mechanism for transport of di- and tripeptides by hamster jejunum in vitro. Clin Sci Mol Med 1975;49:313-22
  • Nakashima E, Tsuji A, Mizuo H, Yamana T. Kinetics and mechanism of in vitro uptake of amino-ß-lactam antibiotics by rat small intestine and relation to the intact-peptide transport system. Biochem Pharmacol 1984;33:3345-52
  • Okano T, Inui K, Maegawa H, et al. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. J Biol Chem 1986;261:14130-4
  • Tsuji A, Tamai I, Hirooka H, Terasaki T. ß-lactam antibiotics and transport via the dipeptide carrier system across the intestinal brush-border membrane. Biochem Pharmacol 1987;36:565-7
  • Iseki K, Sugawara M, Saitoh H, et al. Comparison of transport characteristics of amino ß-lactam antibiotics and dipeptides across rat intestinal brush border membrane. J Pharm Pharmacol 1989;41:628-32
  • Inui K, Okano T, Takano M, et al. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles. Biochim Biophys Acta 1984;769:449-54
  • Daniel H, Adibi SA. Transport of ß-lactam antibiotics in kidney brush border membrane. Determinants of their affinity for the oligopeptide/H+ symporter. J Clin Invest 1993;92:2215-23
  • Tamai I, Nakanishi T, Hayashi K, et al. The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of ß-lactam antibiotics in the rat small intestine. J Pharm Pharmacol 1997;49:796-801
  • Wenzel U, Gebert I, Weintraut H, et al. Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells. J Pharmacol Exp Ther 1996;277:831-9
  • Wenzel U, Thwaites DT, Daniel H. Stereoselective uptake of ß-lactam antibiotics by the intestinal peptide transporter. Br J Pharmacol 1995;116:3021-7
  • Ganapathy ME, Brandsch M, Prasad PD, et al. Differential recognition of ß-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem 1995;270:25672-7
  • Snyder NJ, Tabas LB, Berry DM, et al. Structure-activity relationship of carbacephalosporins and cephalosporins: antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells. Antimicrob Agents Chemother 1997;41:1649-57
  • Bretschneider B, Brandsch M, Neubert R. Intestinal transport of ß-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res 1999;16:55-61
  • Luckner P, Brandsch M. Interaction of 31 ß-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1. Eur J Pharm Biopharm 2005;59:17-24
  • Brandsch M, Knütter I, Leibach FH. The intestinal H+/peptide symporter PEPT1: structure-affinity relationships. Eur J Pharm Sci 2004;21:53-60
  • Ocheltree SM, Shen H, Hu Y, et al. Mechanisms of cefadroxil uptake in the choroid plexus: studies in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther 2004;308:462-7
  • Hironaka T, Itokawa S, Ogawara K-I, et al. Quantitative evaluation of PEPT1 contribution to oral absorption of cephalexin in rats. Pharm Res 2009;26:40-50
  • Bai JP, Amidon GL. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery. Pharm Res 1992;9:969-78
  • Amidon GL, Sadée W. Membrane transporters as drug targets. Pharmaceutical Biotechnology volume 12. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic/Plenum Publishers, 1999
  • Meredith D. The mammalian proton-coupled peptide cotransporter PepT1: sitting on the transporter-channel fence? Philos Trans R Soc B 2009;364:203-7
  • Moore VA, Irwin WJ, Timmins P, et al. A rapid screening system to determine drug affinities for the intestinal dipeptide transporter 2: affinities of ACE inhibitors. Int J Pharm 2000;210:29-44
  • Knütter I, Wollesky C, Kottra G, et al. Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited. J Pharmacol Exp Ther 2008;327:432-41
  • Swaan PW, Stehouwer MC, Tukker JJ. Molecular mechanism for the relative binding affinity to the intestinal peptide carrier. Comparison of three ACE-inhibitors: enalapril, enalaprilat, and lisinopril. Biochim Biophys Acta 1995;1236:31-8
  • Lin CJ, Akarawut W, Smith DE. Competitive inhibition of glycylsarcosine transport by enalapril in rabbit renal brush border membrane vesicles: interaction of ACE inhibitors with high-affinity H+/peptide symporter. Pharm Res 1999;16:609-15
  • Shu C, Shen H, Hopfer U, Smith DE. Mechanism of intestinal absorption and renal reabsorption of an orally active ACE inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab Dispos 2001;29:1307-15
  • Zhu T, Chen X-Z, Steel A, et al. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharm Res 2000;17:526-32
  • Foltz M, Boll M, Raschka L, et al. A novel bifunctionality: PAT1 and PAT2 mediate electrogenic proton/amino acid and electroneutral proton/fatty acid symport. FASEB J 2004;18:1758-60
  • Foster DR, Yee S, Bleske BE, et al. Lack of interaction between the peptidomimetic substrates captopril and cephradine. J Clin Pharmacol 2009;49:360-7
  • Ekins S, Johnston JS, Bahadduri P, et al. In vitro and pharmacophore-based discovery of novel hPEPT1 inhibitors. Pharm Res 2005;22:512-7
  • Knütter I, Kottra G, Fischer W, et al. High-affinity interaction of sartans with H+/peptide transporters. Drug Metab Dispos 2009;37:143-9
  • Irie M, Terada T, Sawada K, et al. Recognition and transport characteristics of nonpeptidic compounds by basolateral peptide transporter in Caco-2 cells. J Pharmacol Exp Ther 2001;298:711-7
  • Döring F, Walter J, Will J, et al. δ-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest 1998;101:2761-7
  • Neumann J, Brandsch M. δ-aminolevulinic acid transport in cancer cells of the human extrahepatic biliary duct. J Pharmacol Exp Ther 2003;305:219-24
  • Tsuji A, Tamai I, Nakanishi M, Amidon GL. Mechanism of absorption of the dipeptide α-methyldopa-phe in intestinal brush-border membrane vesicles. Pharm Res 1990;7:308-9
  • Tamai I, Nakanishi T, Nakahara H, et al. Improvement of L-dopa absorption by dipeptidyl derivation, utilizing peptide transporter PepT1. J Pharm Sci 1998;87:1542-6
  • Tomita Y, Katsura T, Okano T, et al. Transport mechanisms of bestatin in rabbit intestinal brush-border membranes: role of H+/dipeptide cotransport system. J Pharmacol Exp Ther 1990;252:859-62
  • Hori R, Tomita Y, Katsura T, et al. Transport of bestatin in rat renal brush-border membrane vesicles. Biochem Pharmacol 1993;45:1763-8
  • Beauchamp LM, Orr GF, de Miranda P, et al. Amino acid ester prodrugs of acyclovir. Antiv Chem Chemother 1992;3:157-64
  • Lee CP, de Vrueh RL, Smith PL. Transport of a prodrug of acyclovir, L-Valacyclovir, via the oligopeptide transporter. Proc Int Symp Contr Rel Bioact Mat 1996;23:47-8
  • Ganapathy ME, Huang W, Wang H, et al. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun 1998;246:470-5
  • Balimane PV, Tamai I, Guo A, et al. Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem Biophys Res Commun 1998;250:246-51
  • Sugawara M, Huang W, Fei YJ, et al. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J Pharm Sci 2000;89:781-9
  • Liu KX, Kato Y, Kaku TI, et al. Hydroxyprolylserine derivatives JBP923 and JBP485 exhibit the antihepatitis activities after gastrointestinal absorption in rats. J Pharmacol Exp Ther 2000;294:510-5
  • Sawada K, Terada T, Saito H, et al. Effects of glibenclamide on glycylsarcosine transport by the rat peptide transporters PEPT1 and PEPT2. Br J Pharmacol 1999;128:1159-64
  • Terada T, Sawada K, Saito H, et al. Inhibitory effect of novel oral hypoglycemic agent nateglinide (AY4166) on peptide transporters PEPT1 and PEPT2. Eur J Pharmacol 2000;392:11-7
  • Nielsen CU, Supuran CT, Scozzafava A, et al. Transport characteristics of L-carnosine and the anticancer derivative 4-toluenesulfonylureido-carnosine in a human epithelial cell line. Pharm Res 2002;19:1337-44
  • Talluri RS, Samanta SK, Gaudana R, Mitra AK. Synthesis, metabolism and cellular permeability of enzymatically stable dipeptide prodrugs of acyclovir. Int J Pharm 2008;361:118-24
  • Agarwal S, Boddu SH, Jain R, et al. Peptide prodrugs: improved oral absorption of lopinavir, a HIV protease inhibitor. Int J Pharm 2008;359:7-14
  • Santos C, Morais J, Gouveia L, et al. Dipeptide derivatives of AZT: synthesis, chemical stability, activation in human plasma, hPEPT1 affinity, and antiviral activity. ChemMedChem 2008;3:970-8
  • Tsume Y, Vig BS, Sun J, et al. Enhanced absorption and growth inhibition with amino acid monoester prodrugs of floxuridine by targeting hPEPT1 transporters. Molecules 2008;13:1441-54
  • Sun Y, Sun J, Shi S, et al. Synthesis, transport and pharmacokinetics of 5′-amino acid ester prodrugs of 1-ß-D-arabinofuranosylcytosine. Mol Pharm 2009;6:315-25
  • Varma MVS, Eriksson AH, Sawada G, et al. Transepithelial transport of the group II metabotropic glutamate 2/3 receptor agonist (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2, 6-dicarboxylate (LY354740) and its prodrug (1S,2S,5R,6S)-2-[(2′S)-(2′-amino)propionyl]aminobicyclo[3.1.0]hexane-2,6-dicarboxylate (LY544344). Drug Metab Dispos 2009;37:211-20
  • Kikuchi A, Tomoyasu T, Tanaka M, et al. Peptide derivation of poorly absorbable drug allows intestinal absorption via peptide transporter. J Pharm Sci 2009;98:1775-87
  • Dantzig AH, Duckworth DC, Tabas LB. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells. Biochim Biophys Acta 1994;1191:7-13
  • Han HK, Rhie JK, Oh D-M, et al. CHO/hPEPT1 cells overexpressing the human peptide transporter (hPEPT1) as an alternative in vitro model for peptidomimetic drugs. J Pharm Sci 1999;88:347-50
  • Faria TN, Timoszyk JK, Stouch TR, et al. A novel high-throughput PepT1 transporter assay differentiates between substrates and antagonists. Mol Pharm 2004;1:67-76
  • Li M, Anderson GD, Phillips BR, et al. Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos 2006;34:547-55
  • Raeissi SD, Li J, Hidalgo IJ. The role of an α-amino group on H+ -dependent transepithelial transport of cephalosporins in Caco-2 cells. J Pharm Pharmacol 1999;51:35-40
  • Terada T, Saito H, Mukai M, Inui K. Recognition of ß-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am J Physiol 1997;273:F706-11
  • Knütter I, Hartrodt B, Toth G, et al. Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+ /peptide cotransporters. FEBS J 2007;274:5905-14
  • Ganapathy ME, Prasad PD, Mackenzie B, et al. Interaction of anionic cephalosporins with the intestinal and renal peptide transporters PEPT 1 and PEPT 2. Biochim Biophys Acta 1997;1324:296-308
  • Terada T, Saito H, Mukai M, Inui K. Characterization of stably transfected kidney epithelial cell line expressing rat H+ /peptide cotransporter PEPT1: localization of PEPT1 and transport of ß-lactam antibiotics. J Pharmacol Exp Ther 1997;281:1415-21
  • Brandsch M, Brandsch C, Ganapathy ME, et al. Influence of proton and essential histidyl residues on the transport kinetics of the H+/peptide cotransport systems in intestine (PEPT 1) and kidney (PEPT 2). Biochim Biophys Acta 1997;1324:251-62
  • Nicklin PL, Irwin WJ, Timmins P, Morrison RA. Uptake and transport of the ACE-inhibitor ceronapril (SQ29852) by monolayers of human intestinal absorptive (Caco-2) cells in vitro. Int J Pharm 1996;140:175-83
  • Yuasa H, Fleisher D, Amidon GL. Noncompetitive inhibition of cephradine uptake by enalapril in rabbit intestinal brush-border membrane vesicles: an enalapril specific inhibitory binding site on the peptide carrier. J Pharmacol Exp Ther 1994;269:1107-11
  • Thwaites DT, Cavet M, Hirst BH, Simmons NL. Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells. Br J Pharmacol 1995;114:981-6
  • Kitagawa S, Takeda J, Kaseda Y, Sato S. Inhibitory effects of angiotensin-converting enzyme inhibitor on cefroxadine uptake by rabbit small intestinal brush border membrane vesicles. Biol Pharm Bull 1997;20:449-51
  • Terada T, Sawada K, Irie M, et al. Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2. Pflügers Arch 2000;440:679-84
  • Bhardwaj RK, Herrera-Ruiz D, Sinko PJ, et al. Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. J Pharmacol Exp Ther 2005;314:1093-100
  • Inui K, Terada T, Masuda S, Saito H. Physiological and pharmacological implications of peptide transporters, PEPT1 and PEPT2. Nephrol Dial Transplant 2000;15(Suppl 6):11-3
  • Saito H, Terada T, Okuda M, et al. Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim Biophys Acta 1996;1280:173-7
  • Song X, Lorenzi PL, Landowski CP, et al. Amino acid ester prodrugs of the anticancer agent gemcitabine: synthesis, bioconversion, metabolic bioevasion, and hPEPT1-mediated transport. Mol Pharm 2005;2:157-67

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.