193
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Oligomerization of human ATP-binding cassette transporters and its potential significance in human disease

, MS & , PhD
Pages 1049-1063 | Published online: 29 Jul 2009

Bibliography

  • Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 2007;17(4):412-8
  • Linton KJ. Structure and function of ABC transporters. Physiology (Bethesda) 2007;22:122-30
  • Szakacs G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5(3):219-34
  • Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist 2003;8(5):411-24
  • Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 2004;1(1):27-42
  • Dano K. Cross resistance between vinca alkaloids and anthracyclines in Ehrlich ascites tumor in vivo. Cancer Chemother Rep 1972;56(6):701-8
  • Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 1973;323(3):466-83
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976;455(1):152-62
  • Linton KJ, Higgins CF. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 2007;453(5):555-67
  • Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982;1(8):945-51
  • Dawson RJ, Hollenstein K, Locher KP. Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 2007;65(2):250-7
  • Yang Y, Liu Y, Dong Z, et al. Regulation of function by dimerization through the amino-terminal membrane-spanning domain of human ABCC1/MRP1. J Biol Chem 2007;282(12):8821-30
  • Tabcharani JA, Chang XB, Riordan JR, Hanrahan JW. Phosphorylation-regulated Cl-channel in CHO cells stably expressing the cystic fibrosis gene. Nature 1991;352(6336):628-31
  • Inagaki N, Gonoi T, Clement JPT, et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 1995;270(5239):1166-70
  • Chen ZQ, Dong J, Ishimura A, et al. The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J Biol Chem 2006;281(11):7452-7
  • Kerr ID. Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem Biophys Res Commun 2004;315(1):166-73
  • Gao M, Loe DW, Grant CE, et al. Reconstitution of ATP-dependent leukotriene C4 transport by Co-expression of both half-molecules of human multidrug resistance protein in insect cells. J Biol Chem 1996;271(44):27782-7
  • Ostedgaard LS, Rich DP, DeBerg LG, Welsh MJ. Association of domains within the cystic fibrosis transmembrane conductance regulator. Biochemistry 1997;36(6):1287-94
  • Gauthier C, Weber S, Alarco AM, et al. Functional similarities and differences between Candida albicans Cdr1p and Cdr2p transporters. Antimicrob Agents Chemother 2003;47(5):1543-54
  • Herget M, Tampe R. Intracellular peptide transporters in human–compartmentalization of the “peptidome”. Pflugers Arch 2007;453(5):591-600
  • Arnold D, Driscoll J, Androlewicz M, et al. Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 1992;360(6400):171-4
  • Androlewicz MJ, Ortmann B, van Endert PM, et al. Characteristics of peptide and major histocompatibility complex class I/beta 2-microglobulin binding to the transporters associated with antigen processing (TAP1 and TAP2). Proc Natl Acad Sci USA 1994;91(26):12716-20
  • Spies T, Cerundolo V, Colonna M, et al. Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature 1992;355(6361):644-6
  • Lacaille VG, Androlewicz MJ. Herpes simplex virus inhibitor ICP47 destabilizes the transporter associated with antigen processing (TAP) heterodimer. J Biol Chem 1998;273(28):17386-90
  • Ortmann B, Copeman J, Lehner PJ, et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 1997;277(5330):1306-9
  • Meyer TH, van Endert PM, Uebel S, et al. Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Lett 1994;351(3):443-7
  • Velarde G, Ford RC, Rosenberg MF, Powis SJ. Three-dimensional structure of transporter associated with antigen processing (TAP) obtained by single Particle image analysis. J Biol Chem 2001;276(49):46054-63
  • Ohara T, Ohashi-Kobayashi A, Maeda M. Biochemical characterization of transporter associated with antigen processing (TAP)-like (ABCB9) expressed in insect cells. Biol Pharm Bull 2008;31(1):1-5
  • Graf GA, Yu L, Li WP, et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 2003;278(48):48275-82
  • Graf GA, Li WP, Gerard RD, et al. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest 2002;110(5):659-69
  • Graf GA, Cohen JC, Hobbs HH. Missense mutations in ABCG5 and ABCG8 disrupt heterodimerization and trafficking. J Biol Chem 2004;279(23):24881-8
  • Wang J, Zhang DW, Lei Y, et al. Purification and reconstitution of sterol transfer by native mouse ABCG5 and ABCG8. Biochemistry 2008;47(18):5194-204
  • Zhang DW, Graf GA, Gerard RD, et al. Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8. J Biol Chem 2006;281(7):4507-16
  • Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95(26):15665-70
  • Xu J, Peng H, Zhang JT. Human multidrug transporter ABCG2, a target for sensitizing drug resistance in cancer chemotherapy. Curr Med Chem 2007;14(6):689-701
  • Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 2003;52(12):1788-95
  • Zhang JT. Biochemistry and pharmacology of the human multidrug resistance gene product, ABCG2. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2007;32(4):531-41
  • Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 2006;46:381-410
  • Candeil L, Gourdier I, Peyron D, et al. ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer 2004;109(6):848-54
  • Kage K, Tsukahara S, Sugiyama T, et al. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 2002;97(5):626-30
  • Bhatia A, Schafer HJ, Hrycyna CA. Oligomerization of the human ABC transporter ABCG2: evaluation of the native protein and chimeric dimers. Biochemistry 2005;44(32):10893-904
  • Henriksen U, Fog JU, Litman T, Gether U. Identification of intra- and intermolecular disulfide bridges in the multidrug resistance transporter ABCG2. J Biol Chem 2005;280(44):36926-34
  • Liu Y, Yang Y, Qi J, et al. Effect of cysteine mutagenesis on the function and disulfide bond formation of human ABCG2. J Pharmacol Exp Ther 2008;326(1):33-40
  • Liu LX, Janvier K, Berteaux-Lecellier V, et al. Homo- and heterodimerization of peroxisomal ATP-binding cassette half-transporters. J Biol Chem 1999;274(46):32738-43
  • Hillebrand M, Verrier SE, Ohlenbusch A, et al. Live cell FRET microscopy: homo- and heterodimerization of two human peroxisomal ABC transporters, the adrenoleukodystrophy protein (ALDP, ABCD1) and PMP70 (ABCD3). J Biol Chem 2007;282(37):26997-7005
  • Guimaraes CP, Domingues P, Aubourg P, et al. Mouse liver PMP70 and ALDP: homomeric interactions prevail in vivo. Biochim Biophys Acta 2004;1689(3):235-43
  • Kashiwayama Y, Morita M, Kamijo K, Imanaka T. Nucleotide-induced conformational changes of PMP70, an ATP binding cassette transporter on rat liver peroxisomal membranes. Biochem Biophys Res Commun 2002;291(5):1245-51
  • Wanders RJ, Visser WF, van Roermund CW, et al. The peroxisomal ABC transporter family. Pflugers Arch 2007;453(5):719-34
  • Litman T, Jensen U, Hansen A, et al. Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2. Biochim Biophys Acta 2002;1565(1):6-16
  • Xu J, Liu Y, Yang Y, et al. Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2. J Biol Chem 2004;279(19):19781-9
  • McDevitt CA, Collins RF, Conway M, et al. Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 2006;14(11):1623-32
  • Xu J, Peng H, Chen Q, et al. Oligomerization domain of the multidrug resistance-associated transporter ABCG2 and its dominant inhibitory activity. Cancer Res 2007;67(9):4373-81
  • Kaminski WE, Piehler A, Wenzel JJ. ABC A-subfamily transporters: structure, function and disease. Biochim Biophys Acta 2006;1762(5):510-24
  • Denis M, Haidar B, Marcil M, et al. Characterization of oligomeric human ATP binding cassette transporter A1. Potential implications for determining the structure of nascent high density lipoprotein particles. J Biol Chem 2004;279(40):41529-36
  • Trompier D, Alibert M, Davanture S, et al. Transition from dimers to higher oligomeric forms occurs during the ATPase cycle of the ABCA1 transporter. J Biol Chem 2006;281(29):20283-90
  • Hozoji M, Kimura Y, Kioka N, Ueda K. Formation of two intramolecular disulfide bonds is necessary for apoA-I-dependent cholesterol efflux mediated by ABCA1. J Biol Chem 2009;284(17):11293-300
  • Buechler C, Boettcher A, Bared SM, et al. The carboxyterminus of the ATP-binding cassette transporter A1 interacts with a beta2-syntrophin/utrophin complex. Biochem Biophys Res Commun 2002;293(2):759-65
  • Fitzgerald ML, Okuhira K, Short GF 3rd, et al. ATP-binding cassette transporter A1 contains a novel C-terminal VFVNFA motif that is required for its cholesterol efflux and ApoA-I binding activities. J Biol Chem 2004;279(46):48477-85
  • Al-Shawi MK, Omote H. The remarkable transport mechanism of P-glycoprotein: a multidrug transporter. J Bioenerg Biomembr 2005;37(6):489-96
  • Boscoboinik D, Debanne MT, Stafford AR, et al. Dimerization of the P-glycoprotein in membranes. Biochim Biophys Acta 1990;1027(3):225-8
  • Jette L, Potier M, Beliveau R. P-glycoprotein is a dimer in the kidney and brain capillary membranes: effect of cyclosporin A and SDZ-PSC 833. Biochemistry 1997;36(45):13929-37
  • Naito M, Tsuruo T. Functionally active homodimer of P-glycoprotein in multidrug-resistant tumor cells. Biochem Biophys Res Commun 1992;185(1):284-90
  • Poruchynsky MS, Ling V. Detection of oligomeric and monomeric forms of P-glycoprotein in multidrug resistant cells. Biochemistry 1994;33(14):4163-74
  • Taylor JC, Horvath AR, Higgins CF, Begley GS. The multidrug resistance P-glycoprotein. Oligomeric state and intramolecular interactions. J Biol Chem 2001;276(39):36075-8
  • Rosenberg MF, Callaghan R, Ford RC, Higgins CF. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J Biol Chem 1997;272(16):10685-94
  • Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009;323(5922):1718-22
  • Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992;258(5088):1650-4
  • Ishikawa T, Kuo MT, Furuta K, Suzuki M. The human multidrug resistance-associated protein (MRP) gene family: from biological function to drug molecular design. Clin Chem Lab Med 2000;38(9):893-7
  • Soszynski M, Kaluzna A, Rychlik B, et al. Radiation inactivation suggests that human multidrug resistance-associated protein 1 occurs as a dimer in the human erythrocyte membrane. Arch Biochem Biophys 1998;354(2):311-6
  • Rosenberg MF, Mao Q, Holzenburg A, et al. The structure of the multidrug resistance protein 1 (MRP1/ABCC1). crystallization and single-particle analysis. J Biol Chem 2001;276(19):16076-82
  • Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev 1999;79(Suppl 1):S23-45
  • Ramjeesingh M, Kidd JF, Huan LJ, et al. Dimeric cystic fibrosis transmembrane conductance regulator exists in the plasma membrane. Biochem J 2003;374(Pt 3):793-7
  • Schillers H, Shahin V, Albermann L, et al. Imaging CFTR: a tail to tail dimer with a central pore. Cell Physiol Biochem 2004;14(1-2):1-10
  • Eskandari S, Wright EM, Kreman M, et al. Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc Natl Acad Sci USA 1998;95(19):11235-40
  • Zerhusen B, Zhao J, Xie J, et al. A single conductance pore for chloride ions formed by two cystic fibrosis transmembrane conductance regulator molecules. J Biol Chem 1999;274(12):7627-30
  • Wang S, Yue H, Derin RB, et al. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell 2000;103(1):169-79
  • Gupta S, Xie J, Ma J, Davis PB. Intermolecular interaction between R domains of cystic fibrosis transmembrane conductance regulator. Am J Respir Cell Mol Biol 2004;30(2):242-8
  • Rosenberg MF, Kamis AB, Aleksandrov LA, et al. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2004;279(37):39051-7
  • Haggie PM, Verkman AS. Monomeric CFTR in plasma membranes in live cells revealed by single molecule fluorescence imaging. J Biol Chem 2008;283(35):23510-3
  • Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 2004;1666(1-2):105-17
  • Verkman AS, Skorecki K, Ausiello DA. Radiation inactivation of oligomeric enzyme systems: theoretical considerations. Proc Natl Acad Sci USA 1984;81(1):150-4
  • Das M, Fox CF. Chemical cross-linking in biology. Annu Rev Biophys Bioeng 1979;8:165-93
  • Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev 2006;25(4):663-82
  • Ciruela F. Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 2008;19(4):338-43
  • Rai M, Padh H. Expression systems for production of heterologous proteins. Curr Sci 2001;80(9):1121-8
  • Ahmad S, Safa AR, Glazer RI. Modulation of P-glycoprotein by protein kinase C alpha in a baculovirus expression system. Biochemistry 1994;33(34):10313-8
  • Partridge AW, Melnyk RA, Yang D, et al. A transmembrane segment mimic derived from Escherichia coli diacylglycerol kinase inhibits protein activity. J Biol Chem 2003;278(24):22056-60
  • Peelman F, Labeur C, Vanloo B, et al. Characterization of the ABCA transporter subfamily: identification of prokaryotic and eukaryotic members, phylogeny and topology. J Mol Biol 2003;325(2):259-74
  • Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch 2007;453(5):601-10
  • Frank NY, Pendse SS, Lapchak PH, et al. Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 2003;278(47):47156-65
  • Arrese M, Ananthanarayanan M. The bile salt export pump: molecular properties, function and regulation. Pflugers Arch 2004;449(2):123-31
  • Haimeur A, Conseil G, Deeley RG, Cole SP. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab 2004;5(1):21-53
  • Bryan J, Munoz A, Zhang X, et al. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch 2007;453(5):703-18
  • Abele R, Tampe R. The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing. Physiology (Bethesda) 2004;19:216-24
  • Kurashima-Ito K, Ikeya T, Senbongi H, et al. Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6. J Biomol NMR 2006;35(1):53-71
  • Csere P, Lill R, Kispal G. Identification of a human mitochondrial ABC transporter, the functional orthologue of yeast Atm1p. FEBS Lett 1998;441(2):266-70
  • Hogue DL, Liu L, Ling V. Identification and characterization of a mammalian mitochondrial ATP-binding cassette membrane protein. J Mol Biol 1999;285(1):379-89
  • Kamakura A, Fujimoto Y, Motohashi Y, et al. Functional dissection of transmembrane domains of human TAP-like (ABCB9). Biochem Biophys Res Commun 2008;377(3):847-51
  • Zhang F, Hogue DL, Liu L, et al. M-ABC2, a new human mitochondrial ATP-binding cassette membrane protein. FEBS Lett 2000;478(1-2):89-94
  • Kusuhara H, Sugiyama Y. ATP-binding cassette, subfamily G (ABCG family). Pflugers Arch 2007;453(5):735-44
  • Barthelme D, Scheele U, Dinkelaker S, et al. Structural organization of essential iron-sulfur clusters in the evolutionarily highly conserved ATP-binding cassette protein ABCE1. J Biol Chem 2007;282(19):14598-607
  • Richard M, Drouin R, Beaulieu AD. ABC50, a novel human ATP-binding cassette protein found in tumor necrosis factor-alpha-stimulated synoviocytes. Genomics 1998;53(2):137-45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.