178
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Prediction of antiepileptic drug efficacy: the use of intracerebral microdialysis to monitor biophase concentrations

, PhD, , PhD, , , PhD, , PhD, , PhD & , PhD show all
Pages 1267-1277 | Published online: 17 Jul 2009

Bibliography

  • Engel J, Pedley TA. Epilepsy: a comprehensive textbook: LWW, 2008
  • Kwan P, Brodie MJ. Effectiveness of first antiepileptic drug. Epilepsia 2001;42(10):1255-60
  • Dreier J, Jurkat-Rott K, Petzold G, et al. Opening of the blood-brain barrier preceding cortical edema in a severe attack of FHM type II. Neurology 2005;64(12):2145-7
  • Korn A, Golan H, Melamed I, et al. Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome. J Clin Neurophysiol 2005;22(1):1-9
  • Minagar A, Alexander J. Blood-brain barrier disruption in multiple sclerosis. Mult Scler 2003;9(6):540-9
  • Seiffert E, Dreier J, Ivens S, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 2004;24(36):7829-36
  • Nitsch C, Klatzo I. Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci 1983;59(3):305-22
  • Mihály A, Bozóky B. Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized epilepsies and epileptiform convulsions. Acta Neuropathol 1984;65(1):25-34
  • Suzuki R, Nitsch C, Fujiwara K, Klatzo I. Regional changes in cerebral blood flow and blood-brain barrier permeability during epileptiform seizures and in acute hypertension in rabbits. J Cereb Blood Flow Metab 1984;4(1):96-102
  • Cornford E, Oldendorf W. Epilepsy and the blood-brain barrier. Adv Neurol 1986;44:787-812
  • Padou V, Boyet S, Nehlig A. Changes in transport of [14C] alpha-aminoisobutyric acid across the blood-brain barrier during pentylenetetrazol-induced status epilepticus in the immature rat. Epilepsy Res 1995;22(3):175-83
  • Ilbay G, Sahin D, Ates N. Changes in blood-brain barrier permeability during hot water-induced seizures in rats. Neurol Sci 2003;24(4):232-5
  • Leroy C, Roch C, Koning E, et al. In the lithium-pilocarpine model of epilepsy, brain lesions are not linked to changes in blood-brain barrier permeability: an autoradiographic study in adult and developing rats. Exp Neurol 2003;182(2):361-72
  • van Vliet E, da Costa Araújo S, Redeker S, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007;130(Pt 2):521-34
  • van Vliet E, Redeker S, Aronica E, et al. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 2005;46(10):1569-80
  • Petito CK, Schaefer JA, Plum F. Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures. Brain Res 1977;127(2):251-67
  • Janigro D. Blood-brain barrier, ion homeostatis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms. Epilepsy Res 1999;37(3):223-32
  • Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987;84(21):7735-8
  • Thiebaut F, Tsuruo T, Hamada H, et al. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem 1989;37(2):159-64
  • Cordon-Cardo C, O'Brien J, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 1989;86(2):695-8
  • Cordon-Cardo C, O'Brien J, Boccia J, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 1990;38(9):1277-87
  • de Boer A, van der Sandt I, Gaillard P. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol 2003;43:629-56
  • Balayssac D, Authier N, Cayre A, Coudore F. Does inhibition of P-glycoprotein lead to drug-drug interactions? Toxicol Lett 2005;156(3):319-29
  • Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005;6(8):591-602
  • Kwan P, Brodie M. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia 2005;46(2):224-35
  • Kwan P, Sills G, Butler E, et al. Differential expression of multidrug resistance genes in naïve rat brain. Neurosci Lett 2003;339(1):33-6
  • Chaurasia CS. In vivo microdialysis sampling: theory and applications. Biomed Chromatogr 1999;13(5):317-32
  • Höcht C, Lazarowski A, Gonzalez NN, et al. Nimodipine restores the altered hippocampal phenytoin pharmacokinetics in a refractory epileptic model. Neurosci Lett 2007;413(2):168-72
  • Lin LC, Chen YF, Lee WC, et al. Pharmacokinetics of gastrodin and its metabolite p-hydroxybenzyl alcohol in rat blood, brain and bile by microdialysis coupled to LC-MS/MS. J Pharm Biomed Anal 2008;48(3):909-17
  • Graumlich JF, McLaughlin RG, Birkhahn D, et al. Carbamazepine pharmacokinetics-pharmacodynamics in genetically epilepsy-prone rats. Eur J Pharmacol 1999;369(3):305-11
  • Van Belle K, Sarre S, Ebinger G, et al. Brain, liver and blood distribution kinetics of carbamazepine and its metabolic interaction with clomipramine in rats: a quantitative microdialysis study. J Pharmacol Exp Ther 1995;272(3):1217-22
  • Patsalos PN, O'Connell MT, Doheny HC, et al. Antiepileptic drug pharmacokinetics in patients with epilepsy using a new microdialysis probe: preliminary observations. Acta Neurochir Suppl 1996;67:59-62
  • Hack A, Busch V, Pascher B, et al. Monitoring of ketogenic diet for carnitine metabolites by subcutaneous microdialysis. Pediatr Res 2006;60(1):93-6
  • Lindberger M, Tomson T, Stahle L. Validation of microdialysis sampling for subcutaneous extracellular valproic acid in humans. Ther Drug Monit 1998;20(3):358-62
  • Ståhle L, Alm C, Ekquist B, et al. Monitoring free extracellular valproic acid by microdialysis in epileptic patients. Ther Drug Monit 1996;18(1):14-8
  • Lindberger M, Tomson T, Lars S. Microdialysis sampling of carbamazepine, phenytoin and phenobarbital in subcutaneous extracellular fluid and subdural cerebrospinal fluid in humans: an in vitro and in vivo study of adsorption to the sampling device. Pharmacol Toxicol 2002;91(4):158-65
  • Lindberger M, Tomson T, Ohman I, et al. Estimation of topiramate in subdural cerebrospinal fluid, subcutaneous extracellular fluid, and plasma: a single case microdialysis study. Epilepsia 1999;40(6):800-2
  • Lindberger M, Tomson T, Wallstedt L, Stahle L. Distribution of valproate to subdural cerebrospinal fluid, subcutaneous extracellular fluid, and plasma in humans: a microdialysis study. Epilepsia 2001;42(2):256-61
  • de Lange EC, Ravenstijn PG, Groenendaal D, van Steeg TJ. Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J 2005;7(3):E532-43
  • Derendorf H, Hochhaus G, Mollmann H, et al. Receptor-based pharmacokinetic-pharmacodynamic analysis of corticosteroids. J Clin Pharmacol 1993;33(2):115-23
  • Hammarlund-Udenaes M, Paalzow LK, de Lange EC. Drug equilibration across the blood-brain barrier - pharmacokinetic considerations based on the microdialysis method. Pharm Res 1997;14(2):128-34
  • de Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 2002;41(10):691-703
  • Collins JM, Dedrick RL. Distributed model for drug delivery to CSF and brain tissue. Am J Physiol 1983;245(3):R303-10
  • Wang Y, Welty DF. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm Res 1996;13(3):398-403
  • Sechi GP, Petruzzi V, Rosati G, et al. Brain interstitial fluid and intracellular distribution of phenytoin. Epilepsia 1989;30(2):235-9
  • Wilder BJ, Ramsay RE, Willmore LJ, et al. Efficacy of intravenous phenytoin in the treatment of status epilepticus: kinetics of central nervous system penetration. Ann Neurol 1977;1(6):511-8
  • Gross PM, Sposito NM, Pettersen SE, Fenstermacher JD. Differences in function and structure of the capillary endothelium in gray matter, white matter and a circumventricular organ of rat brain. Blood Vessels 1986;23(6):261-70
  • de Lange EC, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Brain Res Rev 1997;25(1):27-49
  • Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 1974;30(1-3):44-55
  • Rada P, Tucci S, Perez J, et al. In vivo monitoring of gabapentin in rats: a microdialysis study coupled to capillary electrophoresis and laser-induced fluorescence detection. Electrophoresis 1998;19(16-17):2976-80
  • Welty DF, Schielke GP, Vartanian MG, Taylor CP. Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate. Epilepsy Res 1993;16(3):175-81
  • Luer MS, Hamani C, Dujovny M, et al. Saturable transport of gabapentin at the blood-brain barrier. Neurol Res 1999;21(6):559-62
  • Thomas SA, Segal MB. The transport of the anti-HIV drug, 2′,3′-didehydro-3′-deoxythymidine (D4T), across the blood-brain and blood-cerebrospinal fluid barriers. Br J Pharmacol 1998;125(1):49-54
  • Walker MC, Tong X, Perry H, et al. Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol 2000;130(2):242-8
  • Cornford EM, Young D, Paxton JW, Sofia RD. Blood-brain barrier penetration of felbamate. Epilepsia 1992;33(5):944-54
  • Pardridge WM, Sakiyama R, Fierer G. Transport of propranolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J Clin Invest 1983;71(4):900-8
  • Urien S, Pinquier JL, Paquette B, et al. Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the rat blood-brain barrier. Drug binding to lipoproteins does not limit the transfer of drug. J Pharmacol Exp Ther 1987;242(1):349-53
  • Walker MC, Alavijeh MS, Shorvon SD, Patsalos PN. Microdialysis study of the neuropharmacokinetics of phenytoin in rat hippocampus and frontal cortex. Epilepsia 1996;37(5):421-7
  • Tong X, Ratnaraj N, Patsalos PN. Vigabatrin extracellular pharmacokinetics and concurrent gamma-aminobutyric acid neurotransmitter effects in rat frontal cortex and hippocampus using microdialysis. Epilepsia 2009;50(2):174-83
  • Wang X, Ratnaraj N, Patsalos PN. The pharmacokinetic inter-relationship of tiagabine in blood, cerebrospinal fluid and brain extracellular fluid (frontal cortex and hippocampus). Seizure 2004;13(8):574-81
  • Abbott NJ, Revest PA. Control of brain endothelial permeability. Cerebrovasc Brain Metab Rev 1991;3(1):39-72
  • de Lange EC, Hesselink MB, Danhof M, et al. The use of intracerebral microdialysis to determine changes in blood-brain barrier transport characteristics. Pharm Res 1995;12(1):129-33
  • Bolwig TG, Hertz MM, Holm-Jensen J. Blood-brain barrier during electroshock seizures in the rat. Eur J Clin Invest 1977;7(2):95-100
  • Seifert G, Huttmann K, Schramm J, Steinhauser C. Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon's horn sclerosis. J Neurosci 2004;24(8):1996-2003
  • Oby E, Janigro D. The blood-brain barrier and epilepsy. Epilepsia 2006;47(11):1761-74
  • van Vliet E, van Schaik R, Edelbroek P, et al. Region-specific overexpression of P-glycoprotein at the blood-brain barrier affects brain uptake of phenytoin in epileptic rats. J Pharmacol Exp Ther 2007;322(1):141-7
  • Sisodiya SM. Mechanisms of antiepileptic drug resistance. Curr Opin Neurol 2003;16(2):197-201
  • Potschka H, Löscher W. In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats. Epilepsia 2001;42(10):1231-40
  • Potschka H, Löscher W. Multidrug resistance-associated protein is involved in the regulation of extracellular levels of phenytoin in the brain. Neuroreport 2001;12(11):2387-9
  • Potschka H, Fedrowitz M, Löscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 2001;12(16):3557-60
  • Potschka H, Fedrowitz M, Löscher W. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett 2002;327(3):173-6
  • Clinckers R, Smolders I, Meurs A, et al. Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity. J Pharmacol Exp Ther 2005;314(2):725-31
  • Potschka H, Fedrowitz M, Loscher W. Brain access and anticonvulsant efficacy of carbamazepine, lamotrigine, and felbamate in ABCC2/MRP2-deficient TR-rats. Epilepsia 2003;44(12):1479-86
  • Baltes S, Fedrowitz M, Tortos CL, et al. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther 2007;320(1):331-43
  • Potschka H, Baltes S, Loscher W. Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats. Epilepsy Res 2004;58(2-3):85-91
  • Scism JL, Powers KM, Artru AA, et al. Probenecid-inhibitable efflux transport of valproic acid in the brain parenchymal cells of rabbits: a microdialysis study. Brain Res 2000;884(1-2):77-86
  • Hesselink MB, Smolders H, Eilbacher B, et al. The role of probenecid-sensitive organic acid transport in the pharmacokinetics of N-methyl-D-aspartate receptor antagonists acting at the glycine(B)-site: microdialysis and maximum electroshock seizures studies. J Pharmacol Exp Ther 1999;290(2):543-50
  • Clinckers R, Smolders I, Michotte Y, et al. Impact of efflux transporters and of seizures on the pharmacokinetics of oxcarbazepine metabolite in the rat brain. Br J Pharmacol 2008;155(7):1127-38
  • Loscher W, Dekundy A, Nagel J, et al. mGlu1 and mGlu5 receptor antagonists lack anticonvulsant efficacy in rodent models of difficult-to-treat partial epilepsy. Neuropharmacology 2006;50(8):1006-15
  • Rizzi M, Caccia S, Guiso G, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci 2002;22(14):5833-9
  • Potschka H, Loscher W. A comparison of extracellular levels of phenytoin in amygdale and hippocampus of kindled and non-kindled rats. Neuroreport 2002;13(1):167-71
  • Scheyer RD, During MJ, Hochholzer JM, et al. Phenytoin concentrations in the human brain: an in vivo microdialysis study. Epilepsy Res 1994;18(3):227-32
  • Tisdall M, Russo S, Sen J, et al. Free phenytoin concentration measurement in brain extracellular fluid: a pilot study. Br J Neurosurg 2006;20(5):285-9
  • Rambeck B, Jurgens UH, May TW, et al. Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy. Epilepsia 2006;47(4):681-94
  • Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 2005;94(6):1187-95
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005;2(1):3-14
  • Pardridge WM. The blood-brain barrier and neurotherapeutics. NeuroRx 2005;2(1):1-2
  • Battaglia G, La Russa M, Bruno V, et al. Systemically administered D-glucose conjugates of 7-chlorokynurenic acid are centrally available and exert anticonvulsant activity in rodents. Brain Res 2000;860(1-2):149-56
  • Fisher RS, Ho J. Potential new methods for antiepileptic drug delivery. CNS Drugs 2002;16(9):579-93
  • Wolfe TR, Macfarlane TC. Intranasal midazolam therapy for pediatric status epilepticus. Am J Emerg Med 2006;24(3):343-6
  • Czapp M, Bankstahl JP, Zibell G, Potschka H. Brain penetration and anticonvulsant efficacy of intranasal phenobarbital in rats. Epilepsia 2008;49(7):1142-50
  • Ahmad S, Fowler LJ, Whitton PS. Effects of acute and chronic lamotrigine treatment on basal and stimulated extracellular amino acids in the hippocampus of freely moving rats. Brain Res 2004;1029(1):41-7
  • Ahmad S, Fowler LJ, Whitton PS. Effect of acute and chronic lamotrigine on basal and stimulated extracellular 5-hydroxytryptamine and dopamine in the hippocampus of the freely moving rat. Br J Pharmacol 2004;142(1):136-42
  • Clinckers R, Smolders I, Meurs A, et al. Hippocampal dopamine and serotonin elevations as pharmacodynamic markers for the anticonvulsant efficacy of oxcarbazepine and 10,11-dihydro-10-hydroxycarbamazepine. Neurosci Lett 2005;390(1):48-53
  • Chenel M, Limosin A, Marchand S, et al. Norfloxacin-induced electroencephalogram alteration and seizures in rats are not triggered by enhanced levels of intracerebral glutamate. Antimicrob Agents Chemother 2003;47(11):3660-2
  • Smolders I, Gousseau C, Marchand S, et al. Convulsant and subconvulsant doses of norfloxacin in the presence and absence of biphenylacetic acid alter extracellular hippocampal glutamate but not gamma-aminobutyric acid levels in conscious rats. Antimicrob Agents Chemother 2002;46(2):471-7
  • Crick EW, Osorio I, Bhavaraju NC, et al. An investigation into the pharmacokinetics of 3-mercaptopropionic acid and development of a steady-state chemical seizure model using in vivo microdialysis and electrophysiological monitoring. Epilepsy Res 2007;74(2-3):116-25
  • Feng MR, Turluck D, Burleigh J, et al. Brain microdialysis and PK/PD correlation of pregabalin in rats. Eur J Drug Metab Pharmacokinet 2001;26(1-2):123-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.