1,155
Views
135
CrossRef citations to date
0
Altmetric
Review

Drug-induced mitochondrial toxicity

, , &
Pages 655-669 | Published online: 30 Nov 2005

Bibliography

  • GARRIDO C, KROEMER G: Life’s smile, death’s grin: vital functions of apoptosisexecuting proteins. Curr. Opin. Cell Biol. (2004) 16(6):639–646.
  • CHAN NN, BRAIN HP, FEHER MD: Metformin-associated lactic acidosis: a rare or very rare clinical entity? Diabet. Med. (1999) 16(4):273–281.
  • LEE HK, PARK KS, CHO YM, LEE YY, PAK YK: Mitochondria-based model for fetal origin of adult disease and insulin resistance. Ann. NY Acad. Sci. (2005) 1042:1–18.
  • CABONI P, SHERER TB, ZHANG N et al. : Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem. Res. Toxicol. (2004) 17(11):1540–1548.
  • LI N, RAGHEB K, LAWLER G et al. : Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. (2003) 278(10):8516–8525.
  • SIRAKI AG, POURAHMAD J, CHAN TS, KHAN S, O’BRIEN PJ: Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic. Biol. Med. (2002) 32(1):2–10.
  • CHAN TS, TENG S, WILSON JX, GALATI G, KHAN S, O’BRIEN PJ: Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1(NQO1). Free Radic. Res. (2002) 36(4):421–427.
  • KHAN S, O’BRIEN PJ: Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state. Biochim. Biophys. Acta (1995) 1269(2):153–161.
  • NIKNAHAD H, KHAN S, O’BRIEN PJ: Hepatocyte injury resulting from the inhibition of mitochondrial respiration at low oxygen concentrations involves reductive stress and oxygen activation. Chem. Biol. Interact. (1995) 98(1):27–44.
  • SUN J, TRUMPOWER BL: Superoxide anion generation by the cytochrome bc1 complex. Arch. Biochem. Biophys. (2003) 419(2):198–206.
  • ANNEPU J, RAVINDRANATH V: 1-Methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced complex I inhibition is reversed by disulfide reductant, dithiothreitol in mouse brain. Neurosci. Lett. (2000) 289(3):209–212.
  • GUTH PS, SPIRTES MA: The phenothiazine tranquilizers: biochemical and biophysical actions. Int. Rev. Neurobiol. (1964) 12:231–278.
  • BALIJEPALLI S, BOYD MR, RAVINDRANATH V: Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation. Neuropharmacology (1999) 38(4):567–577.
  • MAURER I, MOLLER HJ: Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol. Cell Biochem. (1997) 174(1–2):255–259.
  • IGARASHI K, KASUYA F, FUKUI M, USUKI E, CASTAGNOLI N Jr: Studies on the metabolism of haloperidol (HP): the role of CYP3A in the production of the neurotoxic pyridinium metabolite HPP+ found in rat brain following i.p. administration of HP. Life Sci. (1995) 57(26):2439–2446.
  • ROLLEMA H, SKOLNIK M, D’ENGELBRONNER J et al. : MPP(+)-like neurotoxicity of a pyridinium metabolite derived from haloperidol: in vivo microdialysis and in vitro mitochondrial studies. J. Pharmacol. Exp. Ther. (1994) 268(1):380–387.
  • VEITCH K, HUE L: Flunarizine and cinnarizine inhibit mitochondrial complexes I and II: possible implication for parkinsonism. Mol. Pharmacol. (1994) 45(1):158–163.
  • SZTARK F, NOUETTE-GAULAIN K, MALGAT M, DABADIE P, MAZAT JP: Absence of stereospecific effects of bupivacaine isomers on heart mitochondrial bioenergetics. Anesthesiology (2000) 93(2):456–462.
  • CASANOVAS AM, MALMARY NEBOT MF, COURRIERE P, OUSTRIN J: Inhibition of cytochrome oxidase activity by local anaesthetics. Biochem. Pharmacol. (1983) 32(18):2715–2719.
  • STRINGER BK, HARMON HJ: Inhibition of cytochrome oxidase by dibucaine. Biochem. Pharmacol. (1990) 40(5):1077–1081.
  • JOHNSON ME, UHL CB, SPITTLER KH, WANG H, GORES GJ: Mitochondrial injury and caspase activation by the local anesthetic lidocaine. Anesthesiology (2004) 101(5):1184–1194.
  • EL MIR MY, NOGUEIRA V, FONTAINE E, AVERET N, RIGOULET M, LEVERVE X: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. (2000) 275(1):223–228.
  • OWEN MR, DORAN E, HALESTRAP AP: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. (2000) 348(Pt 3):607–614.
  • BRUNMAIR B, STANIEK K, GRAS F et al. : Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes (2004) 53(4):1052–1059.
  • TIRMENSTEIN MA, HU CX, GALES TL et al. : Effects of troglitazone on HepG2 viability and mitochondrial function. Toxicol. Sci. (2002) 69(1):131–138.
  • TAFAZOLI S, O’BRIEN PJ: Peroxidases: a role in the metabolism and side effects of drugs. Drug Discov. Today (2005) 10(9):617–625.
  • NARAYANAN PK, HART T, ELCOCK F et al. : Troglitazone-induced intracellular oxidative stress in rat hepatoma cells: a flow cytometric assessment. Cytometry A (2003) 52(1):28–35.
  • SMITH MT: Mechanisms of troglitazone hepatotoxicity. Chem. Res. Toxicol. (2003) 16(6):679–687.
  • SCATENA R, BOTTONI P, MARTORANA GE et al. : Mitochondrial respiratory chain dysfunction, a nonreceptor- mediated effect of synthetic PPARligands: biochemical and pharmacological implications. Biochem. Biophys. Res. Commun. (2004) 319(3):967–973.
  • STOCKDALE M, SELWYN MJ: Effects of ring substituents on the activity of phenols as inhibitors and uncouplers of mitochondrial respiration. Eur. J. Biochem. (1971) 21(4):565–574.
  • NULTON-PERSSON AC, SZWEDA LI, SADEK HA: Inhibition of cardiac mitochondrial respiration by salicylic acid and acetylsalicylate. J. Cardiovasc. Pharmacol. (2004) 44(5):591–595.
  • MASUBUCHI Y, YAMADA S, HORIE T: Diphenylamine as an important structure of nonsteroidal anti-inflammatory drugs to uncouple mitochondrial oxidative phosphorylation. Biochem. Pharmacol. (1999) 58(5):861–865.
  • SUN X, GARLID KD: On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes. J. Biol. Chem. (1992) 267(27):19147–19154.
  • BORGES N: Tolcapone-related liver dysfunction: implications for use in Parkinson’s disease therapy. Drug Saf. (2003) 26(11):743–747.
  • NISSINEN E, KAHEINEN P, PENTTILA KE, KAIVOLA J, LINDEN IB: Entacapone, a novel catechol- O-methyltransferase inhibitor for Parkinson’s disease, does not impair mitochondrial energy production. Eur. J. Pharmacol. (1997) 340(2–3):287–294.
  • HAASIO K, KOPONEN A, PENTTILA KE, NISSINEN E: Effects of entacapone and tolcapone on mitochondrial membrane potential. Eur. J. Pharmacol. (2002) 453(1):21–26.
  • HANSCH C, MCKARNS SC, SMITH CJ, DOOLITTLE DJ: Comparative QSAR evidence for a freeradical mechanism of phenol-induced toxicity. Chem. Biol. Interact. (2000) 127(1):61–72.
  • MORIDANI MY, SIRAKI A, O’BRIEN PJ: Quantitative structure- toxicity relationships for phenols in isolated rat hepatocytes. Chem. Biol. Interact. (2003) 145(2):213–223.
  • CRONIN MT, MANGA N, SEWARD JR, SINKS GD, SCHULTZ TW: Parametrization of electrophilicity for the prediction of the toxicity of aromatic compounds. Chem. Res. Toxicol. (2001) 14(11):1498–1505.
  • SPANIOL M, BRACHER R, HA HR, FOLLATH F, KRAHENBUHL S: Toxicity of amiodarone and amiodarone analogues on isolated rat liver mitochondria. J. Hepatol. (2001) 35(5):628–636.
  • ARGESE E, BETTIOL C, GIURIN G, MIANA P: Quantitative structure-activity relationships for the toxicity of chlorophenols to mammalian submitochondrial particles. Chemosphere (1999) 38(10):2281–2292.
  • ACCO A, COMAR JF, BRACHT A: Metabolic effects of propofol in the isolated perfused rat liver. Basic Clin. Pharmacol. Toxicol. (2004) 95(4):166–174.
  • CHEN RM, WU CH, CHANG HC et al. : Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology (2003) 98(5):1178–1185.
  • MIYOSHI H, TSUJISHITA H, TOKUTAKE N, FUJITA T: Quantitative analysis of uncoupling activity of substituted phenols with a physicochemical substituent and molecular parameters. Biochim. Biophys. Acta (1990) 1016(1):99–106.
  • SOMASUNDARAM S, SIGTHORSSON G, SIMPSON RJ et al. : Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat. Aliment. Pharmacol. Ther. (2000) 14(5):639–650.
  • SIRAKI AG, CHEVALDINA T, O’BRIEN PJ: Application of quantitative structure-toxicity relationships for acute NSAID cytotoxicity in rat hepatocytes. Chem. Biol. Interact. (2005) 151(3):177–191.
  • GALATI G, TAFAZOLI S, SABZEVARI O, CHAN TS, O’BRIEN PJ: Idiosyncratic NSAID drug-induced oxidative stress. Chem. Biol. Interact. (2002) 142(1–2):25–41.
  • BOELSTERLI UA: Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol. Appl. Pharmacol. (2003) 192(3):307–322.
  • GOMEZ-LECHON MJ, PONSODA X, O’CONNOR E, DONATO T, CASTELL JV, JOVER R: Diclofenac induces apoptosis in hepatocytes by alteration of mitochondrial function and generation of ROS. Biochem. Pharmacol. (2003) 66(11):2155–2167.
  • KRETZ-ROMMEL A, BOELSTERLI UA: Cytotoxic activity of T cells and non-T cells from diclofenac-immunized mice against cultured syngeneic hepatocytes exposed to diclofenac. Hepatology (1995) 22(1):213–222.
  • SZTARK F, MALGAT M, DABADIE P, MAZAT JP: Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology (1998) 88(5):1340–1349.
  • IRWIN W, FONTAINE E, AGNOLUCCI L et al. : Bupivacaine myotoxicity is mediated by mitochondria. J. Biol. Chem. (2002) 277(14):12221–12227.
  • FLORIDI A, DI PADOVA M, BARBIERI R, ARCURI E: Effect of local anesthetic ropivacaine on isolated rat liver mitochondria. Biochem. Pharmacol. (1999) 58(6):1009–1016.
  • CURTI C, MINGATTO FE, POLIZELLO AC, GALASTRI LO, UYEMURA SA, SANTOS AC: Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol. Cell Biochem. (1999) 199(1–2):103–109.
  • LEE CS, PARK SY, KO HH, HAN ES: Effect of change in cellular GSH levels on mitochondrial damage and cell viability loss due to mitomycin c in small cell lung cancer cells. Biochem. Pharmacol. (2004) 68(9):1857–1867.
  • PARK SY, KO HH, SONG JH, HAN ES, LEE CS: Differential effect of nitrogen species on changes in mitochondrial membrane permeability due to mitomycin c in lung epithelial cells. Naunyn Schmiedebergs Arch. Pharmacol. (2004) 369(3):312–321.
  • HASINOFF BB, SCHNABL KL, MARUSAK RA, PATEL D, HUEBNER E: Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovasc. Toxicol. (2003) 3(2):89–99.
  • ZHOU S, STARKOV A, FROBERG MK, LEINO RL, WALLACE KB: Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. (2001) 61(2):771–777.
  • GOORMAGHTIGH E, HUART P, PRAET M, BRASSEUR R, RUYSSCHAERT JM: Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophys. Chem. (1990) 35(2–3):247–257.
  • YEN HC, OBERLEY TD, GAIROLA CG, SZWEDA LI, ST CLAIR DK: Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice. Arch. Biochem. Biophys. (1999) 362(1):59–66.
  • KANG YJ, SUN X, CHEN Y, ZHOU Z: Inhibition of doxorubicin chronic toxicity in catalase-overexpressing transgenic mouse hearts. Chem. Res. Toxicol. (2002) 15(1):1–6.
  • SANTOS DL, MORENO AJ, LEINO RL, FROBERG MK, WALLACE KB: Carvedilol protects against doxorubicininduced mitochondrial cardiomyopathy. Toxicol. Appl. Pharmacol. (2002) 185(3):218–227.
  • QU B, LI QT, WONG KP, TAN TM, HALLIWELL B: Mechanism of clofibrate hepatotoxicity: mitochondrial damage and oxidative stress in hepatocytes. Free Radic. Biol. Med. (2001) 31(5):659–669.
  • KELLER BJ, YAMANAKA H, THURMAN RG: Inhibition of mitochondrial respiration and oxygendependent hepatotoxicity by six structurally dissimilar peroxisomal proliferating agents. Toxicology (1992) 71(1–2):49–61.
  • BERSON A, DE BECO V, LETTERON P et al. : Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology (1998) 114(4):764–774.
  • ILIOPOULOU A, GIANNAKOPOULOS G, MAYRIKAKIS M, ZAFIRIS E, STAMATELOPOULOS S: Reversible fulminant hepatitis following intravenous amiodarone loading. Amiodarone hepatotoxicity. Int. J. Clin. Pharmacol. Ther. (1999) 37(6):312–313.
  • KAUFMANN P, TOROK M, HANNI A, ROBERTS P, GASSER R, KRAHENBUHL S: Mechanisms of benzarone and benzbromarone-induced hepatic toxicity. Hepatology (2005) 41(4):925–935.
  • KOZLIK P, HA HR, STIEGER B, BIGLER L, FOLLATH F: Metabolism of amiodarone (Part III): identification of rabbit cytochrome P450 isoforms involved in the hydroxylation of mono-Ndesethylamiodarone. Xenobiotica (2001) 31(5):239–248.
  • RUCH RJ, BANDYOPADHYAY S, SOMANI P, KLAUNIG JE: Evaluation of amiodarone free radical toxicity in rat hepatocytes. Toxicol. Lett. (1991) 56(1–2):117–126.
  • KARCHER W, KARABUNARLIEV S: The use of computer based structure- activity relationships in the risk assessment of industrial chemicals. J. Chem. Inf. Comput. Sci. (1996) 36(4):672–677.
  • AGOSTON M, ORSI F, FEHER E et al. : Silymarin and vitamin E reduce amiodarone-induced lysosomal phospholipidosis in rats. Toxicology (2003) 190(3):231–241.
  • VARBIRO G, TOTH A, TAPODI A, VERES B, SUMEGI B, GALLYAS F Jr: Concentration dependent mitochondrial effect of amiodarone. Biochem. Pharmacol. (2003) 65(7):1115–1128.
  • WAKABAYASHI T: Megamitochondria formation - physiology and pathology. J. Cell Mol. Med. (2002) 6(4):497–538.
  • SHISHIDO S, KOGA H, HARADA M et al. : Hydrogen peroxide overproduction in megamitochondria of troglitazone-treated human hepatocytes. Hepatology (2003) 37(1):136–147.
  • KAKUDA TN: Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. (2000) 22(6):685–708.
  • CARON M, AUCLAIR M, LAGATHU C et al. : The HIV-1 nucleoside reverse transcriptase inhibitors stavudine and zidovudine alter adipocyte functions in vitro. AIDS (2004) 18(16):2127–2136.
  • YAMAGUCHI T, KATOH I, KURATA S: Azidothymidine causes functional and structural destruction of mitochondria, glutathione deficiency and HIV-1 promoter sensitization. Eur. J. Biochem. (2002) 269(11):2782–2788.
  • VELSOR LW, KOVACEVIC M, GOLDSTEIN M, LEITNER HM, LEWIS W, DAY BJ: Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine. Toxicol. Appl. Pharmacol. (2004) 199(1):10–19.
  • MILAZZO L, PIAZZA M, SANGALETTI O et al.: [13C]Methionine breath test: a novel method to detect antiretroviral drug-related mitochondrial toxicity. J. Antimicrob. Chemother. (2005) 55(1):84–89.
  • GAOU I, MALLITI M, GUIMONT MC et al. : Effect of stavudine on mitochondrial genome and fatty acid oxidation in lean and obese mice. J. Pharmacol. Exp. Ther. (2001) 297(2):516–523.
  • KARBOWSKI M, SPODNIK JH, TERANISHI M et al. : Opposite effects of microtubule-stabilizing and microtubuledestabilizing drugs on biogenesis of mitochondria in mammalian cells. J. Cell Sci. (2001) 114(Pt 2):281–291.
  • NISOLI E, FALCONE S, TONELLO C et al. : Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc. Natl. Acad. Sci. USA (2004) 101(47):16507–16512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.