196
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: a focus on toxicogenomics

, BSc (hons) PhD MRPharmS (Professor)
Pages 1347-1362 | Published online: 07 Oct 2010

Bibliography

  • Poma A, Di Giorgio ML. Toxicogenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: a review. Curr Genomics 2008;9(8):571-85
  • Godin B, Sakamoto JH, Serda RE, Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol 2010; In press
  • Riehemann K, Schneider SW, Luger TA, Nanomedicine – challenge and perspectives. Agnew Chem Int Ed Engl 2009;48:872-97
  • Teli MK, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: going small means aiming Big. Curr Pharm Design 2010; In press
  • Akhtar S, Benter IF. Non-viral delivery of synthetic siRNAs in vivo. J Clinical Invest 2007a;117(12):3623-32
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8(2):129-38
  • Costanotto D, Rossi JR. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457(7228):426-33
  • Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 2010;50:259-93
  • Akhtar S, Hughes MD, Khan A, The delivery of antisense therapeutics. Adv Drug Deliv Rev 2000;44(1):3-21
  • Beale G, Hollins AJ, Benboubetra M, Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessibleregion using the same delivery system. J Drug Target 2003;11(7):449-56
  • Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 2009;5(1):8-20
  • Kurreck J. RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed Engl 2009;48(8):1378-98
  • Martinez J, Patkaniowska A, Urlaub H, Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002;110:563-74
  • Liu Q, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem 2010; In press
  • Martin SE, Caplen NJ. Applications of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 2007;8:81-108
  • Fire A, Xu S, Montgomery MK, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11
  • Schroeder A, Levins CG, Cortez C, Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 2010;267(1):9-21
  • Aouadi M, Tesz GJ, Nicoloro SM, Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009;458(7242):1180-4
  • Akhtar S. Oral delivery of siRNA and antisense oligonucelotides. J Drug Target 2009;17(7):491-5
  • Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 2010;9(1):57-67
  • Jackson AL, Bartz SR, Schelter J, Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21:635-7
  • Sledz CA, Holko M, de Veer MJ, Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003;5(9):834-9
  • Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol 2005;23:1399-405
  • Robbins M, Judge A, Maclachlan I. siRNA and innate immunity. Oligonucleotides 2009;19(2):89-102
  • Sioud M. Deciphering the code of innate immunity recognition of siRNAs. Methods Mol Biol 2009;487:41-59
  • Lin X, Ruan X, Anderson MG, siRNA-mediated off-target gene silencing triggered by a 7 nt complementation, Nucleic Acids Res 2005;33:4527-35
  • Birmingham A, Anderson EM, Reynolds A, 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006;3:199-204
  • Grimm D, Streetz KL, Jopling CL, Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537-41
  • Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: Potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007b;59(2-3):164-82
  • Gonzalez Ferreiro M, Tillman LG, Hardee G, Alginate/poly-L-lysine microparticles for the intestinal delivery of antisense oligonucleotides. Pharm Res 2002;19(6):755-64
  • Khan A, Benboubetra M, Sayyed PZ, Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J Drug Target 2004;12(6):393-404
  • Woodrow KA, Cu Y, Booth CJ, Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 2009;8(6):526-33
  • Bumcrot D, Manoharan M, Koteliansky V, RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2006;2(12):711-19
  • Jackson AL, Burchard J, Leake D, Position-specific chemical modification of siRNAs reduces off-target transcript silencing. RNA 2006;12:1197-205
  • Schwarz DS, Hutvagner G, Du T, Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003;115(2):199-208
  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115(2):209-16. Erratum in: Cell 2003;115(4):505
  • van de Water FM, Boerman OC, Wouterse AC, Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos 2006;34(8):1393-7
  • Kawakami S, Hashida M. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet 2007;22(3):142-51
  • Huang L, Sullenger B, Juliano RL. The role of carrier size in the pharmacodynamics of antisense and siRNA oligonucleotides. J Drug Targeting 2010; In press
  • Juliano R, Alam MR, Dixit V, Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 2008;36(12):4158-71
  • Akhtar S, Agrawal S. In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci 1997;18(1):12-8
  • Braasch DA, Paroo Z, Constantinescu A, Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett 2004;14(5):1139-43
  • Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009;6(3):659-68
  • Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 2003;301(5639):1545-7
  • Beltinger C, Saragovi HU, Smith RM, Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest 1995;95(4):1814-23
  • Akhtar S, Juliano RL. Cellular uptake and intracellular fate of antisense oligonucleotides. Trends in Cell Biology 1992;2:139-44
  • Li W, Szoka FC Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 2007;24(3):438-49
  • Heath F, Haria P, Alexander C. Varying polymer architecture to deliver drugs. AAPS J 2007;9(2):E235-40
  • Grayson SM, Godbey WT. The role of macromolecular architecture in passively targeted polymeric carriers for drug and gene delivery. J Drug Target 2008;16(5):329-56
  • Decuzzi P, Godin B, Tanaka T, Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010;141(3):320-7
  • Ambrose EJ, Easty DM, Jones PC. “Specific reactions of polyelectrolytes with the surfaces of normal and tumour cells”. Brit J Cancer 1958;12:439-47
  • Akhtar S. Non-viral vectors for gene therapy: Beyond delivery. Gene Therapy 2006;13:739-40
  • Kabanov AV, Batrakova EV, Sriadibhatla S, Polymer genomics: shifting the gene and drug delivery paradigms. J Control Release 2005;101(1-3):259-71
  • Kabanov AV. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliv Rev 2006;58(15):1597-621
  • Khor TO, Ibrahim S, Kong AN. Toxicogenomics in drug discovery and drug development: potential applications and future challenges. Pharm Res 2006;23(8):1659-64
  • Fielden MR, Kolaja KL. The state-of-the-art in predictive toxicogenomics. Curr Opin Drug Discov Dev 2006;9(1):84-91
  • Audouy SA, de Leij LF, Hoekstra D, In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 2002;19:1599-605
  • Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003;327:761-6
  • Verma UN, Surabhi RM, Schmaltieg A, Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 2003;9:1291-300
  • Arnold AS, Tang YL, Qian K, Specific beta1-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia. J Hypertens 2007;25(1):197-205
  • Zimmermann TS, Lee AC, Akinc A, RNAi-mediated gene silencing in non-human primates. Nature 2006;441(7089):111-14
  • Semple SC, Akinc A, Chen J, Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010;28(2):172-6
  • Soutschek J, Akinc A, Bramlage B, Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432(7014):173-8
  • Geisbert TW, Hensley LE, Kagan E, Postexposure protection of guinea pigs against a lethal ebola virus challenge isconferred by RNA interference. J Infect Dis 2006;193(12):1650-7
  • Pirollo KF, Rait A, Zhou Q, Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res 2007;67(7):2938-43
  • Kizelsztein P, Ovadia H, Garbuzenko O, Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J Neuroimmunol 2009;213(1-2):20-5
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009;30(11):592-9
  • Semple SC, Harasym TO, Clow KA, Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic Acid. J Pharmacol Exp Ther 2005;312(3):1020-6
  • Omidi Y, Hollins AJ, Benboubetra M, Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gen expression changes in human epithelial cells. J Drug Target 2003;11(6):311-23
  • Omidi Y, Barar J, Heidari HR, Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial A549 cells. Toxicol Mech Methods 2008;18(4):369-78
  • Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 1989;86(16):6077-81
  • Fedorov Y, King A, Anderson E, Different delivery methods-different expression profiles. Nat Methods 2005;2:241
  • Omidi Y, Hollins AJ, Drayton RM, Polypropylenimine dendrimer-induced gene expression changes: the effect of complexation with DNA, dendrimer generation and cell type. J Drug Target 2005;13(7):431-43
  • Gilmore IR, Fox SP, Hollins AJ, The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J Drug Target 2004;12(6):315-40
  • Gilmore IR, Fox SP, Hollins AJ, Delivery strategies for siRNA-mediated gene silencing. Curr Drug Deliv 2006;3(2):147-5
  • Boussif O, Lezoualc'h F, Zanta MA, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995;92(16):7297-301
  • Kichler A. Gene transfer with modified polyethylenimines. J Gene Med 2004;6(Suppl 1):S3-10
  • Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 2001;53(3):341-58
  • Grayson AC, Doody AM, Putnam D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res 2006;23(8):1868-76
  • Ge Q, Filip L, Bai A, Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 2004;101(23):8676-81
  • Urban-Klein B, Werth S, Abuharbeid S, RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005;12(5):461-6
  • Hobel S, Koburger I, John M, Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab. J Gene Med 2010;12(3):287-300
  • Merkel OM, Beyerle A, Librizzi D, Nonviral siRNA delivery to the lung: investigation of PEG-PEI polyplexes and their in vivo performance. Mol Pharm 2009;6(4):1246-60
  • Jere D, Jiang HL, Arote R, Degradable polyethylenimines as DNA and small interfering RNA carriers. Expert Opin Drug Deliv 2009;6(8):827-34
  • Taratula O, Garbuzenko OB, Kirkpatrick P, Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release 2009;140(3):284-93
  • Hollins AJ, Benboubetra M, Omidi Y, Evaluation of generation 2 and 3 poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides targeting the epidermal growth factor receptor. Pharm Res 2004;21(30):458-66
  • Tack F, Bakker A, Maes S, Modified poly(propylene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). J Drug Target 2006;14(2):69-86
  • Santhakumaran LM, Thomas T, Thomas TJ. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res 2004;32(7):2102-12
  • Zinselmeyer BH, Mackay SP, Schatzlein AG, The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res 2002;19(7):960-7
  • Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007;35(Pt 1):61-7
  • Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 2009;71(3):445-62
  • Minko T, Patil ML, Zhang M, LHRH-targeted nanoparticles for cancer therapeutics. Methods Mol Biol 2010;624:281-94
  • Kim ID, Lim CM, Kim JB, Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. J Control Release 2010;142(3):422-30
  • Patil ML, Zhang M, Taratula O, Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules 2009;10(2):258-66
  • Han L, Zhang A, Wang H, Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther 2010; In press
  • Waite CL, Roth CM. PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjug Chem 2010; In press
  • Hollins AJ, Omidi Y, Benter IF, Toxicogenomics of drug delivery systems: exploiting delivery system-induced changes in target gene expression to enhance siRNA potency. J Drug Targeting 2007;15(1):83-8
  • Yoo H, Sazani P, Juliano RL. PAMAM dendrimers as delivery agents for antisense oligonucleotides. Pharm Res 1999;16(12):1799-804
  • Kang H, De Long R, Fisher MH, Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 2005;22(12):2099-106
  • Ustrell V, Hoffman L, Pratt G, PA200, a nuclear proteasome activator involved in DNA repair. Embo J 2002;21:3516-25
  • May WS, Tyler PG, Ito T, Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J Biol Chem 1994;269:26865-70
  • Ruvolo PP, Deng X, May WS. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 2001;15:515-22
  • Dufes C, Keith WN, Bilsland A, Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res 2005;65:8079-84
  • Davis ME, Zuckerman JE, Choi CH, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464(7291):1067-70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.