334
Views
32
CrossRef citations to date
0
Altmetric
Reviews

The influence of pharmacogenetics and cofactors on clinical outcomes in kidney transplantation

& (Professor)
Pages 731-743 | Published online: 25 Mar 2011

Bibliography

  • Hansen NT, Brunak S, Altman RB. Generating genome-scale candidate gene lists for pharmacogenomics. Clin Pharmacol Ther 2009;86(2):183-9
  • Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447(7145):661-78
  • Cooper GM, Johnson JA, Langaee TY, A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 2008;112(4):1022-7
  • Takeuchi F, McGinnis R, Bourgeois S, A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009;5(3):e1000433
  • van Gelder T, Hilbrands LB, Vanrenterghem Y, A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999;68(2):261-6
  • Pillans PI, Rigby RJ, Kubler P, A retrospective analysis of mycophenolic acid and cyclosporin concentrations with acute rejection in renal transplant recipients. Clin Biochem 2001;34(1):77-81
  • Kiberd BA, Lawen J, Fraser AD, Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation. Am J Transplant 2004;4(7):1079-83
  • Gaston RS, Kaplan B, Shah T, Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. Am J Transplant 2009;9(7):1607-19
  • Le Meur Y, Buchler M, Thierry A, Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007;7(11):2496-503
  • van Gelder T, Silva HT, de Fijter JW, Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation 2008;86(8):1043-51
  • Fulton B, Markham A. Mycophenolate mofetil. A review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs 1996;51(2):278-98
  • European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet 1995;345(8961):1321-5
  • Mathew TH. A blinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at three years. Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation 1998;65(11):1450-4
  • Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998;34(6):429-55
  • Basu NK, Kole L, Kubota S, Human UDP-glucuronosyltransferases show atypical metabolism of mycophenolic acid and inhibition by curcumin. Drug Metab Dispos 2004;32(7):768-73
  • Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 2004;32(8):775-8
  • Mackenzie PI. Identification of uridine diphosphate glucuronosyltransferases involved in the metabolism and clearance of mycophenolic acid. Ther Drug Monit 2000;22(1):10-3
  • Picard N, Ratanasavanh D, Premaud A, Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 2005;33(1):139-46
  • Mojarrabi B, Mackenzie PI. The human UDP glucuronosyltransferase, UGT1A10, glucuronidates mycophenolic acid. Biochem Biophys Res Commun 1997;238(3):775-8
  • Albert C, Vallee M, Beaudry G, The monkey and human uridine diphosphate-glucuronosyltransferase UGT1A9, expressed in steroid target tissues, are estrogen-conjugating enzymes. Endocrinology 1999;140(7):3292-302
  • Bernard O, Tojcic J, Journault K, Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos 2006;34(9):1539-45
  • Gensburger O, Picard N, Marquet P. Effect of mycophenolate acyl-glucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clin Chem 2009;55(5):986-93
  • Shipkova M, Wieland E, Schutz E, The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes. Transplant Proc 2001;33(1-2):1080-1
  • Shipkova M, Armstrong VW, Weber L, Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients. Ther Drug Monit 2002;24(3):390-9
  • Westley IS, Brogan LR, Morris RG, Role of Mrp2 in the hepatic disposition of mycophenolic acid and its glucuronide metabolites: effect of cyclosporine. Drug Metab Dispos 2006;34(2):261-6
  • Picard N, Yee SW, Woillard JB, The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther 2010;87(1):100-8
  • Ducloux D, Ottignon Y, Semhoun-Ducloux S, Mycophenolate mofetil-induced villous atrophy. Transplantation 1998;66(8):1115-16
  • Kamar N, Faure P, Dupuis E, Villous atrophy induced by mycophenolate mofetil in renal-transplant patients. Transpl Int 2004;17(8):463-7
  • Maes BD, Dalle I, Geboes K, Erosive enterocolitis in mycophenolate mofetil-treated renal-transplant recipients with persistent afebrile diarrhea. Transplantation 2003;75(5):665-72
  • Borrows R, Chusney G, James A, Determinants of mycophenolic acid levels after renal transplantation. Ther Drug Monit 2005;27(4):442-50
  • Heller T, van Gelder T, Budde K, Plasma concentrations of mycophenolic acid acyl glucuronide are not associated with diarrhea in renal transplant recipients. Am J Transplant 2007;7(7):1822-31
  • Hesselink DA, van Hest RM, Mathot RA, Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant 2005;5(5):987-94
  • Shipkova M, Beck H, Voland A, Identification of protein targets for mycophenolic acid acyl glucuronide in rat liver and colon tissue. Proteomics 2004;4(9):2728-38
  • Haenisch S, Zimmermann U, Dazert E, Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics J 2007;7(1):56-65
  • Meyer ZU, Schwabedissen HE, Jedlitschky G, Variable expression of MRP2 (ABCC2) in human placenta: influence of gestational age and cellular differentiation. Drug Metab Dispos 2005;33(7):896-904
  • Hirouchi M, Suzuki H, Itoda M, Characterization of the cellular localization, expression level, and function of SNP variants of MRP2/ABCC2. Pharm Res 2004;21(5):742-8
  • Baldelli S, Merlini S, Perico N, C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 2007;8(9):1127-41
  • Miura M, Satoh S, Inoue K, Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 2007;63(12):1161-9
  • Naesens M, Kuypers DR, Verbeke K, Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation 2006;82(8):1074-84
  • van Schaik RH, van Agteren M, de Fijter JW, UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther 2009;86(3):319-27
  • Zhang WX, Chen B, Jin Z, Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica 2008;38(11):1422-36
  • Woillard JB, Rerolle JP, Picard N, Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br J Clin Pharmacol 2010;69(6):675-83
  • Yang JW, Lee PH, Hutchinson IV, Genetic polymorphisms of MRP2 and UGT2B7 and gastrointestinal symptoms in renal transplant recipients taking mycophenolic acid. Ther Drug Monit 2009;31(5):542-8
  • Duguay Y, Baar C, Skorpen F, A novel functional polymorphism in the uridine diphosphate-glucuronosyltransferase 2B7 promoter with significant impact on promoter activity. Clin Pharmacol Ther 2004;75(3):223-33
  • Djebli N, Picard N, Rerolle JP, Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics 2007;17(5):321-30
  • van Agteren M, Armstrong VW, van Schaik RH, AcylMPAG plasma concentrations and mycophenolic acid-related side effects in patients undergoing renal transplantation are not related to the UGT2B7-840G>A gene polymorphism. Ther Drug Monit 2008;30(4):439-44
  • Huang YH, Galijatovic A, Nguyen N, Identification and functional characterization of UDP-glucuronosyltransferases UGT1A8*1, UGT1A8*2 and UGT1A8*3. Pharmacogenetics 2002;12(4):287-97
  • Barraclough KA, Lee KJ, Staatz CE. Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics 2010;11(3):369-90
  • Girard H, Court MH, Bernard O, Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 2004;14(8):501-15
  • Kuypers DR, Naesens M, Vermeire S, The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther 2005;78(4):351-61
  • NCBI SNP database; Available from: http://www.ncbi.nlm.nih.gov/projects/SNP/ [Accessed September 2010]
  • Gensburger O, Van Schaik RH, Picard N, Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genomics 2010;20(9):537-43
  • Wu T-Y, Peng Y, Pelleymonter L, Pharmacogenetics of the mycophenolic acid targets inosine monophosphate dehydrogenase IMPDH1 and IMPDH2: gene sequence variation and functional genomics. Br J Pharmacol 2010; accepted article; DOI: 10.111/j.1476-5331
  • Wang J, Zeevi A, Webber S, A novel variant L263F in human inosine 5′-monophosphate dehydrogenase 2 is associated with diminished enzyme activity. Pharmacogenet Genomics 2007;17(4):283-90
  • Garat A, Cauffiez C, Hamdan-Khalil R, IMPDH2 genetic polymorphism: a promoter single-nucleotide polymorphism disrupts a cyclic adenosine monophosphate responsive element. Genet Test Mol Biomarkers 2009;13(6):841-7
  • Sombogaard F, van Schaik RH, Mathot RA, Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T > C polymorphism. Pharmacogenet Genomics 2009;19(8):626-34
  • Winnicki W, Weigel G, Sunder-Plassmann G, An inosine 5′-monophosphate dehydrogenase 2 single-nucleotide polymorphism impairs the effect of mycophenolic acid. Pharmacogenomics J 2010;10(1):70-6
  • Grinyo J, Vanrenterghem Y, Nashan B, Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int 2008;21(9):879-91
  • Wang J, Yang JW, Zeevi A, IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther 2008;83(5):711-17
  • Kagaya H, Miura M, Saito M, Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic Clin Pharmacol Toxicol 2010;107(2):631-6
  • Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988;43(6):630-5
  • Kelly P, Kahan BD. Review: metabolism of immunosuppressant drugs. Curr Drug Metab 2002;3(3):275-87
  • Kato R, Nishide M, Kozu C, Is cyclosporine A transport inhibited by pravastatin via multidrug resistant protein 2? Eur J Clin Pharmacol 2010;66(2):153-8
  • Venkataramanan R, Swaminathan A, Prasad T, Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995;29(6):404-30
  • Moller A, Iwasaki K, Kawamura A, The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects. Drug Metab Dispos 1999;27(6):633-6
  • Dai Y, Hebert MF, Isoherranen N, Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006;34(5):836-47
  • Wu CY, Benet LZ. Disposition of tacrolimus in isolated perfused rat liver: influence of troleandomycin, cyclosporine, and gg918. Drug Metab Dispos 2003;31(11):1292-5
  • Jeong H, Chiou WL. Role of P-glycoprotein in the hepatic metabolism of tacrolimus. Xenobiotica 2006;36(1):1-13
  • Kobayashi M, Saitoh H, Kobayashi M, Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J Pharmacol Exp Ther 2004;309(3):1029-35
  • Kuehl P, Zhang J, Lin Y, Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001;27(4):383-91
  • Warrington JS, Shaw LM. Pharmacogenetic differences and drug-drug interactions in immunosuppressive therapy. Expert Opin Drug Metab Toxicol 2005;1(3):487-503
  • Tang HL, Ma LL, Xie HG, Effects of the CYP3A5*3 variant on cyclosporine exposure and acute rejection rate in renal transplant patients: a meta-analysis. Pharmacogenet Genomics 2010;20(9):525-31
  • Zhu HJ, Yuan SH, Fang Y, The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: a meta-analysis. Pharmacogenomics J 2010 [Epub ahead of print]
  • Haufroid V, Mourad M, Van Kerckhove V, The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004;14(3):147-54
  • Macphee IA, Fredericks S, Mohamed M, Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. Transplantation 2005;79(4):499-502
  • Mourad M, Mourad G, Wallemacq P, Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation 2005;80(7):977-84
  • Tsuchiya N, Satoh S, Tada H, Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 2004;78(8):1182-7
  • Wallemacq P, Armstrong VW, Brunet M, Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit 2009;31(2):139-52
  • Thervet E, Loriot MA, Barbier S, Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 2010;87(6):721-6
  • van Gelder T, Hesselink DA. Dosing tacrolimus based on CYP3A5genotype: will it improve clinical outcome? Clin Pharmacol Ther 2010;87(6):640-1
  • Kuypers DR. Pharmacogenetic vs. concentration-controlled optimization of tacrolimus dosing in renal allograft recipients. Clin Pharmacol Ther 2010;88(5):595-6, author reply 97
  • Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II. Clin Pharmacokinet 2010;49(4):207-21
  • Crettol S, Venetz JP, Fontana M, Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients. Pharmacogenet Genomics 2008;18(4):307-15
  • Johne A, Kopke K, Gerloff T, Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther 2002;72(5):584-94
  • Bandur S, Petrasek J, Hribova P, Haplotypic structure of ABCB1/MDR1 gene modifies the risk of the acute allograft rejection in renal transplant recipients. Transplantation 2008;86(9):1206-13
  • Hauser IA, Schaeffeler E, Gauer S, ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol 2005;16(5):1501-11
  • Woillard JB, Rerolle JP, Picard N, Donor P-gp polymorphisms strongly influence renal function and graft loss in a cohort of renal transplant recipients on cyclosporine therapy in a long-term follow-up. Clin Pharmacol Ther 2010;88(1):95-100
  • Naesens M, Lerut E, de Jonge H, Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J Am Soc Nephrol 2009;20(11):2468-80
  • Hesselink DA, Bouamar R, van Gelder T. The pharmacogenetics of calcineurin inhibitor-related nephrotoxicity. Ther Drug Monit 2010;32(4):387-93
  • Feng B, Stemmer PM. Interactions of calcineurin A, calcineurin B, and Ca2+. Biochemistry 1999;38(38):12481-9
  • Zhu D, Cardenas ME, Heitman J. Calcineurin mutants render T lymphocytes resistant to cyclosporin A. Mol Pharmacol 1996;50(3):506-11
  • Moscoso-Solorzano GT, Ortega F, Rodriguez I, A search for cyclophilin-A gene variants in cyclosporine A-treated renal transplanted patients. Clin Transplant 2008;22(6):722-9
  • HapMap Database; Available from: www.hapmap.org [Accessed February 2011]
  • Ruiz JC, Sanchez A, Rengel M, Use of the new proliferation signal inhibitor everolimus in renal transplant patients in Spain: preliminary results of the EVERODATA registry. Transplant Proc 2007;39(7):2157-9
  • Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 2000;356(9225):194-202
  • Cravedi P, Ruggenenti P, Remuzzi G. Sirolimus to replace calcineurin inhibitors? Too early yet. Lancet 2009;373(9671):1235-6
  • Lampen A, Zhang Y, Hackbarth I, Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 1998;285(3):1104-12
  • Sattler M, Guengerich FP, Yun CH, Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 1992;20(5):753-61
  • Picard N, Djebli N, Sauvage FL, Metabolism of sirolimus in the presence or absence of cyclosporine by genotyped human liver microsomes and recombinant cytochromes P450 3A4 and 3A5. Drug Metab Dispos 2007;35(3):350-5
  • Picard N, Rouguieg-Malki K, Kamar N, CYP3A5 genotype does not influence everolimus in vitro metabolism and clinical pharmacokinetics in renal transplant recipients. Transplantation accepted
  • Crowe A, Lemaire M. In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm Res 1998;15(11):1666-72
  • Oswald S, Nassif A, Modess C, Pharmacokinetic and pharmacodynamic interactions between the immunosuppressant sirolimus and the lipid-lowering drug ezetimibe in healthy volunteers. Clin Pharmacol Ther 2010;87(6):663-7
  • Anglicheau D, Pallet N, Rabant M, Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int 2006;70(6):1019-25
  • Anglicheau D, Le Corre D, Lechaton S, Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant 2005;5(3):595-603
  • Le Meur Y, Djebli N, Szelag JC, CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin Pharmacol Ther 2006;80(1):51-60
  • Miao LY, Huang CR, Hou JQ, Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients. Biopharm Drug Dispos 2008;29(1):1-5
  • Kimchi-Sarfaty C, Oh JM, Kim IW, A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 2007;315(5811):525-8
  • Huang S, Bjornsti MA, Houghton PJ. Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2003;2(3):222-32
  • Masuda S, Terada T, Yonezawa A, Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol 2006;17(8):2127-35
  • Otsuka M, Matsumoto T, Morimoto R, A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA 2005;102(50):17923-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.