419
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis

, , , & , PhD
Pages 1465-1480 | Published online: 31 Jul 2013

Bibliography

  • Environment agency's science update on the use of bioaccessibility testing in risk assessment of land contamination. 2005. Available from: WWW.Environment_Agency.Gov.UK/Static/Documents/2science_Update_1284046
  • Peijnenburg WJ, Jager T. Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Safety 2003;56:63-77
  • Sandberg AS. Methods and options in vitro dialyzability; benefits and limitations. Int J Vitam Nutr Res 2005;75:395-404
  • Oomen AG, Hack A, Minekus M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol 2002;36:3326-34
  • Armstrong SA, Vand de Wiele T, Germida JJ, et al. Aryl hydrocarbon bioaccessibility to small mammals from arctic plants using in vitro techniques. Environ Toxicol Chem 2007;26:491-6
  • National Academy of Sciences/National Research Council (NAS/NRC). Bioavailability of contaminants in soils and sediments: processes, tools, and applications. National Academy Press; Washington, DC, USA: 2002
  • U.S. EPA. Human Health Assessment Group, Office of Health and Environmental Assessment. Dose-response analysis of ingested benzo[a]pyrene (CAS No. 50-32-8). EPA/600/R-92/045 US Environmental Protection Agency, Washington, DC; 1991
  • IPCS. Environmental health criteria 202: selected non-heterocyclic polycyclic aromatic hydrocarbons. International Programme on Chemical Safety, World Health Organization; Lyon, France: 1998
  • Bruce ED, Autenrieth RL, Burghardt RC, et al. Modeling toxic endpoints for improving human health risk assessment of polycyclic aromatic hydrocarbon parent compounds and single mixtures. Toxicol Environ Chem 2009;91:137-56
  • Fiala Z, Vyskocil A, Krajak V, et al. Enviromental exposure of small children to polycyclic aromatic hydrocarbons. Int Arch Occup Enviorn Health 2001;74:411-20
  • Weston DP, Mayer LM. In vitro digestive fluid extraction as a measue of the bioavailability of sediment-associated polycylic aromatic hydrocarbons: sources of variation and implications for partitioning models. Environ Toxicol Chem 1998;17:820-9
  • Calabrese EJ, Stanek EJ III, Pekow P, et al. Soil ingestion estimates for children residing on a superfund site. Ecotoxicol Environ Saf 1997;36:258-68
  • Ramesh A, Archibong A, Hood DB, et al. Global environmental distribution and human health effects of polycyclic aromatic hydrocarbons. In: Loganathan BG, Lam PK-S, editors. Global contamination trends of persistent organic chemicals. Taylor & Francis Publishers; Boca Raton, Florida: 2011. p. 95-124
  • Diggs DL, Huderson AC, Harris KL, et al. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health Part C 2011;29:1-34
  • Harris KL, Myers JN, Ramesh A. Benzo(a)pyrene modulates fluoranthene-induced cellular responses in HT-29 colon cells in a dual exposure system. Environ Toxicol Pharmacol 2013;36:358-67
  • Sergent T, Ribonnet L, Kolosova A, et al. Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem Toxicol 2008;46:813-41
  • Wienk KJH, Marx JJM, Beynen AC. The concept of iron bioavailability and its assessment. Eur J Nutr 1999;38:51-75
  • Versantvoort CHM, Van de Kamp E, Rompelberg CJM. Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. RIVM report 320102002/2004 National Institute for Public Health and the Environment, Blithoven, The Netherlands: 2004. p. 87
  • Kawamura Y, Kamata E, Ogama Y, et al. The effect of various foods on the intestinal absorption of benzo(a)pyrene in rats. J Food Hyg Soc Japan 1988;29:21-5
  • Stavric B, Klassen R. Dietary effects on the uptake of benzo(a)pyrene. Food Chem Toxicol 1994;32:727-34
  • Boki K, Kadota S, Takahashi M, et al. Uptake of polycyclic aromatic hydrocarbons by insoluble dietary fiber. J Health Sci 2007;53:99-106
  • Viau C, Zaoui C, Charhonneau S. Dietary fibers reduce the urinary excretion of 1-hydroxypyrene following intravenous administration of pyrene. Toxicol Sci 2004;78:15-19
  • Kim J, Koo SI, Noh SK. Green tea extract markedly lowers the lymphatic absorption and increases the biliary secretion of 14C-benzo[a]pyrene in rats. J Nutr Biochem 2012;23:1007-11
  • Vasiluk L, Pinto LJ, Tsang WS. The uptake and metabolism of benzo[a]pyrene from a sample food substrate in an in vitro model of digestion. Food Chem Toxicol 2008;46:610-18
  • Gurr MI. The nutritional significance of lipids. In: Fox PF, editor. Developments in dairy chemistry-2. Applied Science Publishers Ltd; England: 1983. p. 365-417
  • Hobson DW, Hobson VL. Normal and abnormal intestinal absorption by humans. In: Gad SC, editor. Toxicology of the gastrointestinal tract. CRC Press; Boca Raton, Florida: 1986. p. 27-30
  • Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 2009;296:E1183-94
  • Jandacek RJ, Genuis SJ. An assessment of the intestinal lumen as a site for intervention in reducing body burdens of organochlorine compounds. Scientific World J 2013;2013:Article ID 205621; 10pp
  • Rudkowska I, Roynette CE, Demonty I, et al. Diacylglycerol: efficacy and mechanism of action of an anti-obesity agent. Obes Res 2005;13:1864-76
  • Akoh CC. Lipid-based fat substitutes. Crit Rev Food Sci Nutr 1995;35:405-30
  • Moret S, Conte LS. Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. J Chromatogr A 2000;882:245-53
  • Yoo JS, Norman JO, Bersbee DL. Benzo(a)pyrene uptake by serum lipids: correlation with triglyceride concentration. Proc Soc Exp Biol Med 1984;177:434-40
  • Kwack SJ, Lee BM. Correlation between DNA or protein adducts and benzo(a)pyrene diol epoxide 1-triglyceride adduct detected in vitro and in vivo. Carcinogenesis 2000;21:629-32
  • Thomson AB, Keelan M, Garg ML, et al. Intestinal aspects of lipid absorption: in review. Can J Physiol Pharmacol 1989;67:179-91
  • Weber LP, Lanno RP. Effect of bile salts, lipid, and humic acids on absorption of benzo[a]pyrene by isolated channel catfish (Ictalurus punctatus) intestine segments. Environ Toxicol Chem 2001;20:1117-24
  • Rahman A, Barrowman JA, Rahimtula A. The influence of bile on bioavailability of polynuclear aromatic hydrocarbons from the rat intestine. Can J Physiol Pharmacol 1986;64:1214-18
  • Fahey TD, Insel PM, Roth WT, et al. Fit and well: core concepts and labs in physical fitness and wellness. The McGraw-Hill Companies, Inc; New York: 2007
  • Mcdonald GB, Weidman M. Partitioning of polar fatty acids into lymph and portal vein after intestinal absorption in the rat. Q J Exp Physiol 1987;72:153-9
  • Guillot E, Vaugelade P, Lemarchal P, et al. Intestinal absorption and liver uptake of medium-chain fatty acids in non-anaesthetized pigs. Br J Nutr 1993;69:431-42
  • Alingst B, Shen DD. Gastrointestinal absorption. In: Rozman K, Hänninen O, editors. Gastrointestinal toxicology. Elsevier Science Publishers; London: 2007. p. 29-42
  • Gershkovich P, Hoffman A. Uptake of lipophilic drugs by plasma derived isolated chylomicrons: linear correlation with intestinal lymphatic bioavailability. Eur J Pharm Sci 2005;26:394-404
  • Polyakov LM, Chasovskikh MI, Panin LE. Binding and transport of benzo(a)pyrene by blood plasma lipoproteins: the possible role of apolipoprotein B in this process. Bioconjug Chem 1996;7:346-400
  • Shu HP, Nichols AV. Benzo(a)pyrene uptake by human plasma lipoproteins in vitro. Cancer Res 1979;39:1224-30
  • Vauhkonen M, Kuusi T, Kinnunen PK. Serum and tissue distribution of benzo(a)pyrene from intravenously injected chylomicrons in rat in vivo. Cancer Lett 1980;11:113-19
  • Laher JM, Rigler MW, Vetter RD, et al. Similar bioavailability and lymphatic transport of benzo(a)pyrene when administered to rats in different amounts of dietary fat. J Lipid Res 1984;25:1337-42
  • Gershkovich P, Hoffman A. Effect of high-fat meal on absorption and disposition of lipophilic compounds: the importance of degree of association with triglyceride-rich lipoproteins. Eur J Pharm Sci 2007;32:24-32
  • Zaleski J, Kwei GY, Thurman RG, Kauffman FC. Suppression of benzo(a)pyrene metabolism by accumulation of triacylglycerols in rat hepatocytes: effect of high-fat and food-restricted diets. Carcinogensis 1991;12:2073-9
  • Ruby MV, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 1996;30:422-30
  • Ruby MV, Davis A, Link TE, et al. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ Sci Technol 1993;27:2870-6
  • Hamel SC, Buckley B, Lioy PJ. Bioaccessibility of metals in soils for different liquid to soil ratios in synthetic gastric fluid. Environ Sci Technol 1998;32:358-62
  • Khan S, Cao Q, Lin AJ, et al. Concentrations and bioaccessibility of polycyclic aromatic hydrocarbons in wastewater-irrigated soil using in vitro gastrointestinal test. Environ Sci Pollut Res Int 2008;15:344-53
  • Tang XY, Tang L, Zhu YG, et al. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environ Pollut 2006;140:279-85
  • Lu M, Yuan D, Lin Q, et al. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in topsoils from different urban functional areas using an in vitro gastrointestinal test. Environ Monit Assess 2010;166:29-39
  • Hamel SC, Ellickson KM, Lioy PJ. The estimation of the bioaccessibility of heavy metals in soils using artificial biofluids by two novel methods: mass-balance and soil recapture. Sci Total Environ 1999;243/244:273-8
  • Cave MR, Wragg J, Harrison I, et al. Comparison of batch mode and dynamic physiologically based bioaccessibility tests for PAHs in soil samples. Environ Sci Technol 2010;44:2654-60
  • Gregory J, Lowe S, Bates CJ, et al. National diet and nutrient survey: young people aged 4 to 18 years. Volume 1: Report of the diet and nutrition survey The stationary office; London: 2000
  • Grøn C, Oomen A, Weyand E, et al. Bioaccessibility of PAH from Danish soils. J Environ Sci Health A Tox Hazard Subst Environ Eng 2007;42:1233-9
  • Yu YX, Chen L, Yang D, et al. Polycyclic aromatic hydrocarbons in animal-based foods from Shanghai: bioaccessibility and dietary exposure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012;29:1465-74
  • Holman H-Y, Mao NY, Goth-Goldstein R. Oral bioavailability of PAHs from solid environmental matrix. Annual Report, Earth Sciences Division, Lawrence Berkeley National Lab; California: 1997
  • Holman H-Y, Goth-Goldstein R, Aston D. Evaluation of gastrointestinal solubilization of petroleum hydrocarbon residues in soil using an in vitro physiologically based model. Environ Sci Technol 2002;36:1281-6
  • Weston DP, Maruya KA. Predicting bioavailability and bioaccumulation with in vitro digestive fluid extraction. Environ Toxicol Chem 2002;5:962-71
  • Tamakawa K. Polycyclic aromatic hydrocarbons in food. In: Nollet LML, editor. Handbook of food analysis: residues and other food component analysis. Volume 2 Marcel Dekker, Inc; NewYork: 2004. p. 1449-84
  • Pleil JD, Stiegel MA, Sobus JR, et al. Cumulative exposure assessment for trace-level polycyclic aromatic hydrocarbons (PAHs) using human blood and plasma analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2010;878:1753-60
  • Minhas JK, Vasiluk L, Pinto LJ, et al. Mobilization of chrysene from soil in a model digestive system. Environ Toxicol Chem 2006;25:1729-37
  • Vasiluk L, Pinto LJ, Walji ZA, et al. Benzo(a)pyrene bioavailability from pristine soil and contaminated sediment assessed using two in vitro models. Environ Toxicol Chem 2007;26:387-93
  • Jurjanz S, Rychen G. In vitro bioaccessibility of soil-bound polycyclic aromatic hydrocarbons in successive digestive compartments in cows. J Agric Food Chem 2007;55:8800-5
  • Bauman DE, Perfield JW, de Veth MJ, et al. New perspectives on lipid digestion and metabolism in ruminants. Proc Cornell Nutr. Conf. 2003; p. 175-89
  • James K, Peters RE, Laird BD, et al. Human exposure assessment: a case study of 8 PAH contaminated soils using in vitro digestors and the juvenile swine model. Environ Sci Technol 2011;45:4586-93
  • Wang HS, Man YB, Wu FY, et al. Oral bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) through fish consumption, based on an in vitro digestion model. J Agric Food Chem 2010;58:11517-24
  • O'neill IK, Povey AC, Bingham S, et al. Systematic modulation by human diet levels of dietary fibre and beef on metabolism and disposition of benzo[a]pyrene in the gastrointestinal tract of Fischer F344 rats. Carcinogenesis 1990;11:609-16
  • Khalil A, Villard PH, Dao MA, et al. Polycyclic aromatic hydrocarbons potentiate high-fat diet effects on intestinal inflammation. Toxicol Lett 2010;196:161-7
  • Backhed F, Ding H, Wang T. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004;101:15718-23
  • Baker PI, Lde DR, Ferguson LR. Role of gut microflora in Crohn's disease. Expert Rev Gastroenterol Hepatol 2009;3:535-46
  • Van de Wiele TR, Vanhaecke L, Boeckaert C, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ.Hlth. Perspect 2005;113:6-10
  • Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol 1991;70:443-59
  • Kanaly RA, Harayama S. Biodegradation of high-molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 2000;182:2059-67
  • U.S. EPA (Environmental Protection Agency). Recommended toxicity equivalence factors (TEFs) for human health risk assessments of 2,3,7,8-tetrachlorodibenzo-p-dioxin and dioxin-like compounds. Risk Assessment Forum; Washington, DC: 2010; EPA/600/R-10/005
  • Siciliano SD, Laird BD, Lemieux CL. Polycyclic aromatic hydrocarbons are enriched but bioaccessibility reduced in brownfield soils adhered to human hands. Chemosphere 2010;80:1101-8
  • Tao S, Li L, Ding J, et al. Mobilization of soil bound residue of organochlorine pesticides and polycyclic aromatic hydrocarbons in an in-vitro gastrointestinal model. Environ Sci Technol 2011;45:1127-32
  • Goni I, Serrano J, Saura-Calixto F. Bioaccessibility of beta-caroten, lutein, and lycopene from fruits and vegetables. J Agric Food Chem 2006;54:5382-7
  • World Cancer Fund and the American Institute for Cancer Research. Food, nutrition and the prevention of cancer: a global perspective. American Institute for Cancer Research, Washington, DC; 1997
  • Cummings JH, Gibson GR, Macfarlane GT. Quantitative estimates of fermentation in the hind gut of man. Acta Vet Scand Suppl 1989;86:76-82
  • Cavret S, Feidt C. Intestinal metabolism of PAH: in vitro demonstration and study of its impact on PAH transfer through the intestinal epithelium. Environ Res 2005;98:22-32
  • Molly K, Vande Woestyne M, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 1993;39:254-8
  • Tilston EL, Gibson GR, Collins CD. Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH. Environ Sci Technol 2011;45:5301-8
  • Saikat S. Bioavailability/bioaccessibility testing in risk assessment of land contamination- a short review, chemical hazards and poisons report 6. Health Protection Agency; London, UK: 2006. p. 44-5
  • Hagens WI, Lijzen JPA, Sips AJAM, et al. The bioaccessibility and relative bioavailability of lead from soils for fasted and fed conditions. Letter report 711701080 National Institute for Public Health and the Environment; Bilthoven, The Netherlands: 2008
  • Ng JC, Juhasz AL, Smith E, et al. Contaminant bioavailability and bioaccessibility. Part 1: A scientific and technical review. Cooperative research centre for contamination assessment and remediation of environment. Technical Report Series, no. 14 University of South Australia, Adelaide, Australia; 2010. p. 87
  • Ramesh A, Walker SA, Hood DB, et al. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 2004;23:301-33
  • Ramesh A, Archibong AE, Huderson AC, et al. Polycyclic aromatic hydrocarbons. In: Gupta R, editor. Veterinary toxicology. Elsevier Science; London: 2012. p. 797-809
  • Kazerouni N, Sinha R, Hsu CH, et al. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 2001;39:423-36
  • Sinha R, Kulldorff M, Gunter MJ, et al. Dietary benzo(a)pyrene intake and risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev 2005a;14:2030-4
  • Sinha R, Peters U, Cross AJ, et al. Meat, meat cooking methods and preservation and risk for colorectal adenoma. Cancer Res 2005b;65:8034-41
  • Sinha R, Cross A, Curtin J, et al. Development of a food frequency questionnaire module and databases for compounds in cooked and processed meats. Mol Nutr Food Res 2005;49:648-55
  • Gunter MJ, Probst-Hensch NM, Cortessis VK, et al. Meat intake, cooking-related mutagens and risk of colorectal adenoma in a sigmoidoscopy-based case-control study. Carcinogenesis 2005;26:637-42
  • Harris DL, Washington MK, Hood DB, et al. Dietary fat-influenced development of colon neoplasia in Apc Min mice exposed to benzo(a)pyrene. Toxicol Pathol 2009;37:938-46
  • Halberg RB, Larsen MC, Elmergreen TL, et al. Cyp1b1 exerts opposing effects on intestinal tumorigenesis via exogenous and endogenous substrates. Cancer Res 2008;68:7394-402
  • Huderson AC, Myers JN, Niaz MS, et al. Chemoprevention of benzo(a)pyrene-induced colon polyps in ApcMin mice by resveratrol. J Nutr Biochem 2013;24:713-24
  • Hood DB, Ramesh A, Chirwa S, et al. Developmental toxicity of polycyclic aromatic hydrocarbons. In: Gupta RC, editor. Reproductive and developmental toxicology. Elsevier Academic Press; London: 2011. p. 593-606
  • Ramesh A, Archibong A. Reproductive toxicity of polycyclic aromatic hydrocarbons: occupational relevance. In: Gupta RC, editor. Reproductive and developmental toxicology. Elsevier Academic Press; London: 2011. p. 577-92
  • Kamangar F, Strickland PT, Pourshams A, et al. High exposure to polycyclic aromatic hydrocarbons may contribute to high risk of esophageal cancer in northeastern Iran. Anticancer Res 2005;25:425-8
  • Van Gijssel HE, Schild LJ, Watt DL, et al. Polycyclic aromatic hydrocarbon-DNA adducts determined by semiquantitative immunohistochemistry in human esophageal biopsies taken in 1985. Mutat Res 2004;547:55-62
  • Goldman R, Enewold L, Pellizzari E, et al. Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res 2001;61:6367-71
  • Gammon MD, Sagiv SK, Eng SM, et al. Polycyclic aromatic hydrocarbon-DNA adducts and breast cancer: a pooled analysis. Arch Environ Health 2004;59:640-9
  • Davila DR, Mounho BJ, Burchiel SW. Toxicity of polycyclic aromatic hydrocarbons to the human immune system: models and mechanisms. Toxicol Ecotoxicol News 1997;4:5-9
  • Moir D, Viau A, Chu I, et al. Pharmacokinetics of benzo[a]pyrene in the rat. J Toxicol.Environ Health A 1998;53:507-30
  • Hutcheon DE, Kantrowitz J, Van Gelder RN, et al. Factors affecting plasma benzo[a]pyrene levels in environmental studies. Environ Res1983;32104110
  • Ferguson Lr. Role of dietary mutagens in cancer and atherosclerosis. Curr Opin Clin Nutr Metab Care 2009;12:343-9
  • Prins PA, Perati PR, Kon V, et al. Benzo[a]pyrene potentiates the pathogenesis of abdominal aortic aneurysms in apolipoprotein E knockout mice. Cell Physiol Biochem 2012;29:121-30
  • Xia Y, Zhu P, Han Y, et al. Urinary metabolites of polycyclic aromatic hydrocarbons in relation to idiopathic male infertility. Human Reprod 2009;1:1-8
  • Zones MT. Smoking and reproduction: gene damage to human gametes and embryos. Hum Reprod Update 2000;6:122-31
  • Niu Q, Zhang H, Li X, et al. Benzo(a)pyrene-induced neurobehavioral function and neurotransmitter alterations in coke oven workers. Occup Environ Med 2010;67:444-8
  • Perera FP, Li Z, Whyatt R, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009;124:195-202
  • Elsherbiny ME, Brocks DR. The ability of polycyclic hydrocarbons to alter physiological factors underlying drug disposition. Drug Metab Rev 2011;43:457-75
  • Larsen JT, Brosen K. Consumption of charcoal-broiled meats as an experimental tool for discerning CYP1A2-mediated drug metabolism in vivo. Basic Clin Pharmacol Toxicol 2005;97:141-8
  • Horai Y, Ishizaki T, Sasaki T, et al. Bioavailability and pharmacokinetics of theophylline in plain uncoated and sustained- release dosage forms in relation to smoking habit. I. Single dose study. Eur J Clin Pharmacol 1983;24:79-87
  • Mayo PR. Effect of passive smoking on theophylline clearance in children. Ther Drug Monit 2001;23:503-5
  • Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab 2012;9:1327-44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.