1,065
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Cell- and biomarker-based assays for predicting nephrotoxicity

(Research Officer) , (Senior Research Officer) & (Professor)

Bibliography

  • Choudhury D, Ahmed Z. Drug-associated renal dysfunction and injury. Nat Clin Pract Nephrol 2006;2(2):80-91
  • Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol 2014;10(4):193-207
  • Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 2013;17(1):204
  • Hsu RK, McCulloch CE, Dudley RA, et al. Temporal changes in incidence of dialysis-requiring AKI. J Am Soc Nephrol 2013;24(1):37-42
  • Campion S, Aubrecht J, Boekelheide K, et al. The current status of biomarkers for predicting toxicity. Expert Opin Drug Metab Toxicol 2013;9(11):1391-408
  • Bucaloiu ID, Kirchner HL, Norfolk ER, et al. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int 2012;81(5):477-85
  • Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 2008;48:463-93
  • Cook D, Brown D, Alexander R, et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 2014;13(6):419-31
  • Loghman-Adham DM, Kiu Weber DCI, Ciorciaro DC, et al. Detection and management of nephrotoxicity during drug development. Expert Opin Drug Saf 2012;11(4):581-96
  • Swan SK. The search continues–an ideal marker of GFR. Clin Chem 1997;43(6 Pt 1):913-14
  • Bonventre JV, Vaidya VS, Schmouder R, et al. Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 2010;28(5):436-40
  • Fuchs TC, Hewitt P. Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. The AAPS J 2011;13(4):615-31
  • Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function–measured and estimated glomerular filtration rate. N Engl J Med 2006;354(23):2473-83
  • Muller PY, Dieterle F. Tissue-specific, non-invasive toxicity biomarkers: translation from preclinical safety assessment to clinical safety monitoring. Expert Opin Drug Metab Toxicol 2009;5(9):1023-38
  • Zandi-Nejad K, Eddy AA, Glassock RJ, Brenner BM. Why is proteinuria an ominous biomarker of progressive kidney disease? Kidney Int Suppl 2004(92):S76-89
  • McCullough PA, Bouchard J, Waikar SS, et al. Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney Injury: executive summary from the tenth consensus conference of the acute dialysis quality initiative (ADQI). Contrib Nephrol 2013;182:5-12
  • Edelstein CL. Biomarkers in kidney disease. Academic Press/Elsevier; London: 2010
  • Fassett RG, Venuthurupalli SK, Gobe GC, et al. Biomarkers in chronic kidney disease: a review. Kidney Int 2011;80(8):806-21
  • Sistare FD, Dieterle F, Troth S, et al. Towards consensus practices to qualify safety biomarkers for use in early drug development. Nat Biotechnol 2010;28(5):446-54
  • Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol 2010;28(5):455-62
  • Silberstein E, Konduru K, Kaplan GG. The interaction of hepatitis A virus (HAV) with soluble forms of its cellular receptor 1 (HAVCR1) share the physiological requirements of infectivity in cell culture. Virol J 2009;6:175
  • Tami C, Silberstein E, Manangeeswaran M, et al. Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions. J Virol 2007;81(7):3437-46
  • Bailly V, Zhang Z, Meier W, et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem 2002;277(42):39739-48
  • Vaidya VS, Ramirez V, Ichimura T, et al. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2006;290(2):F517-29
  • Han WK, Bailly V, Abichandani R, et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 2002;62(1):237-44
  • Ozer JS, Dieterle F, Troth S, et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 2010;28(5):486-94
  • Vaidya VS, Ozer JS, Dieterle F, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 2010;28(5):478-85
  • Zhou Y, Vaidya VS, Brown RP, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci 2008;101(1):159-70
  • van Timmeren MM, van den Heuvel MC, Bailly V, et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 2007;212(2):209-17
  • Han WK, Waikar SS, Johnson A, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 2008;73(7):863-9
  • Madero M, Sarnak MJ, Stevens LA. Serum cystatin C as a marker of glomerular filtration rate. Curr Opin Nephrol Hypertens 2006;15(6):610-16
  • Dieterle F, Perentes E, Cordier A, et al. Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol 2010;28(5):463-9
  • Shlipak MG, Matsushita K, Arnlov J, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med 2013;369(10):932-43
  • Jones SE, Jomary C. Clusterin. Int J Biochem Cell Biol 2002;34(5):427-31
  • Hoffmann D, Fuchs TC, Henzler T, et al. Evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology 2010;277(1-3):49-58
  • Rosenberg ME, Silkensen J. Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 1995;27(7):633-45
  • Ishii A, Sakai Y, Nakamura A. Molecular pathological evaluation of clusterin in a rat model of unilateral ureteral obstruction as a possible biomarker of nephrotoxicity. Toxicol Pathol 2007;35(3):376-82
  • Madsen J, Nielsen O, Tornoe I, et al. Tissue localization of human trefoil factors 1, 2, and 3. J Histochem Cytochem 2007;55(5):505-13
  • Yu Y, Jin H, Holder D, et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat Biotechnol 2010;28(5):470-7
  • O’Seaghdha CM, Hwang SJ, Larson MG, et al. Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol 2013;24(11):1880-8
  • Paragas N, Qiu A, Zhang Q, et al. The NGAL reporter mouse detects the response of the kidney to injury in real time. Nat Med 2011;17(2):216-22
  • Borkham-Kamphorst E, Drews F, Weiskirchen R. Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1β through nuclear factor-κB activation. Liver Int 2011;31(5):656-65
  • Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004;432(7019):917-21
  • Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2007;18(2):407-13
  • Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand J Clin Lab Invest Suppl 2008;241:89-94
  • Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 2003;14(10):2534-43
  • Kai K, Yamaguchi T, Yoshimatsu Y, et al. Neutrophil gelatinase-associated lipocalin, a sensitive urinary biomarker of acute kidney injury in dogs receiving gentamicin. J Toxicol Sci 2013;38(2):269-77
  • Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Michaluk-Skutnik J. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of cyclosporine nephrotoxicity? Pediatr Nephrol 2010;25(5):889-97
  • Viau A, El Karoui K, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 2010;120(11):4065-76
  • Molls RR, Savransky V, Liu M, et al. Keratinocyte-derived chemokine is an early biomarker of ischemic acute kidney injury. Am J Physiol Renal Physiol 2006;290(5):F1187-93
  • Parikh CR, Jani A, Melnikov VY, et al. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 2004;43(3):405-14
  • Menke J, Iwata Y, Rabacal WA, et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest 2009;119(8):2330-42
  • Isbel NM, Hill PA, Foti R, et al. Tubules are the major site of M-CSF production in experimental kidney disease: correlation with local macrophage proliferation. Kidney Int 2001;60(2):614-25
  • Wada T, Naito T, Griffiths RC, et al. Systemic autoimmune nephritogenic components induce CSF-1 and TNF-α in MRL kidneys. Kidney Int 1997;52(4):934-41
  • Alikhan MA, Jones CV, Williams TM, et al. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol 2011;179(3):1243-56
  • Yokoyama H, Kreft B, Kelley VR. Biphasic increase in circulating and renal TNF-α in MRL-lpr mice with differing regulatory mechanisms. Kidney Int 1995;47(1):122-30
  • Vielhauer V, Mayadas TN. Functions of TNF and its receptors in renal disease: distinct roles in inflammatory tissue injury and immune regulation. Semin Nephrol 2007;27(3):286-308
  • Bosomworth MP, Aparicio SR, Hay AW. Urine N-acetyl-β-D-glucosaminidase–a marker of tubular damage? Nephrol Dial Transplant 1999;14(3):620-6
  • Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-β-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 2007;18(3):904-12
  • D’Amico G, Bazzi C. Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hypertens 2003;12(6):639-43
  • Mohammadi-Karakani A, Asgharzadeh-Haghighi S, Ghazi-Khansari M, Hosseini R. Determination of urinary enzymes as a marker of early renal damage in diabetic patients. J Clin Lab Anal 2007;21(6):413-17
  • Westhuyzen J, Endre ZH, Reece G, et al. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant 2003;18(3):543-51
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215-33
  • Schena FP, Serino G, Sallustio F. MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring. Nephrol Dial Transplant 2014;29(4):755-63
  • Zhong X, Chung AC, Chen HY, et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 2011;22(9):1668-81
  • Lan YF, Chen HH, Lai PF, et al. MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 2012;23(12):2012-23
  • Wang G, Kwan BC, Lai FM, et al. Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am J Hypertens 2010;23(1):78-84
  • Dai Q, Zhao J, Qi X, et al. MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genomics 2014;15(1):333
  • Bhatt K, Zhou L, Mi QS, et al. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med 2010;16(9-10):409-16
  • Saikumar J, Hoffmann D, Kim TM, et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 2012;129(2):256-67
  • Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012;7(3):e30679
  • Cheng L, Sun X, Scicluna BJ, et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int 2014;86(2):433-44
  • Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 2014;3: doi: 10.3402/jev.v3.23743
  • Pfaller W, Gstraunthaler G. Nephrotoxicity testing in vitro–what we know and what we need to know. Environ Health Perspect 1998;106(Suppl 2):559-69
  • Nielsen R, Birn H, Moestrup SK, et al. Characterization of a kidney proximal tubule cell line, LLC-PK1, expressing endocytotic active megalin. J Am Soc Nephrol 1998;9(10):1767-76
  • Steinmassl D, Pfaller W, Gstraunthaler G, Hoffmann W. LLC-PK1 epithelia as a model for in vitro assessment of proximal tubular nephrotoxicity. In Vitro Cell Dev Biol Anim 1995;31(2):94-106
  • White DJ, Seaman C. LLC-RK1 cell screening test for nephrotoxicity. Methods Mol Biol 1995;43:11-16
  • Fukuishi N, Gemba M. Use of cultured renal epithelial-cells for the study of cisplatin toxicity. Jpn J Pharmacol 1989;50(2):247-9
  • Toutain H, Morin JP. Renal proximal tubule cell cultures for studying drug-induced nephrotoxicity and modulation of phenotype expression by medium components. Ren Fail 1992;14(3):371-83
  • Fishman AI, Alexander B, Eshghi M, et al. Nephrotoxin-induced renal cell injury involving biochemical alterations and its prevention with antioxidant. J Clin Med Res 2012;4(2):95-101
  • Ryan MJ, Johnson G, Kirk J, et al. HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int 1994;45(1):48-57
  • Zhipeng W, Li L, Qibing M, et al. Increased expression of heat shock protein (HSP)72 in a human proximal tubular cell line (HK-2) with gentamicin-induced injury. J Toxicol Sci 2006;31(1):61-70
  • Sung MJ, Kim DH, Jung YJ, et al. Genistein protects the kidney from cisplatin-induced injury. Kidney Int 2008;74(12):1538-47
  • Wu Y, Connors D, Barber L, et al. Multiplexed assay panel of cytotoxicity in HK-2 cells for detection of renal proximal tubule injury potential of compounds. Toxicol In Vitro 2009;23(6):1170-8
  • Gunness P, Aleksa K, Kosuge K, et al. Comparison of the novel HK-2 human renal proximal tubular cell line with the standard LLC-PK1 cell line in studying drug-induced nephrotoxicity. Can J Physiol Pharmacol 2010;88(4):448-55
  • Glynne PA. Primary culture of human proximal renal tubular epithelial cells. Methods Mol Med 2000;36:197-205
  • Li W, Lam M, Choy D, et al. Human primary renal cells as a model for toxicity assessment of chemo-therapeutic drugs. Toxicol In Vitro 2006;20(5):669-76
  • Wieser M, Stadler G, Jennings P, et al. hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol 2008;295(5):F1365-75
  • Ellis JK, Athersuch TJ, Cavill R, et al. Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system. Mol Biosyst 2011;7(1):247-57
  • Abraham VC, Taylor DL, Haskins JR. High content screening applied to large-scale cell biology. Trends Biotechnol 2004;22(1):15-22
  • Zock JM. Applications of high content screening in life science research. Comb Chem High Throughput Screen 2009;12(9):870-6
  • Bickle M. The beautiful cell: high-content screening in drug discovery. Anal Bioanal Chem 2010;398(1):219-26
  • Lin Z, Will Y. Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol Sci 2012;126(1):114-27
  • Johnson AC, Becker K, Zager RA. Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury. Am J Physiol Renal Physiol 2010;299(2):F426-35
  • Sohn SJ, Kim SY, Kim HS, et al. In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol Lett 2013;217(3):235-42
  • Keirstead ND, Wagoner MP, Bentley P, et al. Early prediction of polymyxin-induced nephrotoxicity with next-generation urinary kidney injury biomarkers. Toxicol Sci 2014;137(2):278-91
  • Li Y, Oo ZY, Chang SY, et al. An in vitro method for the prediction of renal proximal tubular toxicity in humans. Toxicol Res 2013;2(5):352-65
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotech 2014;32(8):760-72
  • Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010;10(1):36-42
  • Jang KJ, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb) 2013;5(9):1119-29
  • Justice BA, Badr NA, Felder RA. 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today 2009;14(1-2):102-7
  • Fisel P, Renner O, Nies AT, et al. Solute carrier transporter and drug-related nephrotoxicity: the impact of proximal tubule cell models for preclinical research. Expert Opin Drug Metab Toxicol 2014;10(3):395-408
  • Astashkina AI, Mann BK, Prestwich GD, Grainger DW. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials 2012;33(18):4700-11
  • Astashkina AI, Mann BK, Prestwich GD, Grainger DW. Comparing predictive drug nephrotoxicity biomarkers in kidney 3-D primary organoid culture and immortalized cell lines. Biomaterials 2012;33(18):4712-21
  • DesRochers TM, Suter L, Roth A, Kaplan DL. Bioengineered 3d human kidney tissue, a platform for the determination of nephrotoxicity. PLoS One 2013;8(3):e59219
  • Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 2014;69-70:1-18
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotech 2014;32(8):773-85
  • Priest BT, Bell IM, Garcia ML. Role of hERG potassium channel assays in drug development. Channels 2008;2(2):87-93
  • Tiong HY, Huang P, Xiong S, et al. Drug-induced nephrotoxicity: clinical impact and preclinical in vitro models. Mol Pharm 2014;11(7):1933-48
  • Gomella LG, Haist SA. In: Jim S, Harriet L, editors. Clinician’s pocket reference. 11th Edition. McGraw-Hill Medical, New York, USA; 2007
  • Papadakis MA, McPhee SJ, Rabow MW. In: Christine D, Harriet L, Barbara H. Current medical diagnosis & treatment. McGraw-Hill Education, Columbus, OH; 2014
  • Chaturvedi S, Farmer T, Kapke GF. Assay validation for KIM-1: human urinary renal dysfunction biomarker. Int J Biol Sci 2009;5(2):128-34
  • Croda-Todd MT, Soto-Montano XJ, Hernandez-Cancino PA, Juarez-Aguilar E. Adult cystatin C reference intervals determined by nephelometric immunoassay. Clin Biochem 2007;40(13-14):1084-7
  • Weber MH, Scholz P, Stibbe W, Scheler F. Alpha 1-microglobulin in the urine and serum in proteinuria and kidney insufficiency. Klin Wochenschr 1985;63(15):711-17
  • IJ L, Dekker LJ, Koudstaal PJ, et al. Serum clusterin levels are not increased in presymptomatic Alzheimer’s disease. J Proteome Res 2011;10(4):2006-10
  • Qu Y, Yang Y, Ma D, Xiao W. Increased trefoil factor 3 levels in the serum of patients with three major histological subtypes of lung cancer. Oncol Rep 2012;27(4):1277-83
  • Bolignano D, Lacquaniti A, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 2009;4(2):337-44
  • Hata D, Miyazaki M, Seto S, et al. Nephrotic syndrome and aberrant expression of laminin isoforms in glomerular basement membranes for an infant with Herlitz junctional epidermolysis bullosa. Pediatrics 2005;116(4):e601-7
  • Branten AJ, Mulder TP, Peters WH, et al. Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury. Nephron 2000;85(2):120-6
  • Gani DK, Lakshmi D, Krishnan R, Emmadi P. Evaluation of C-reactive protein and interleukin-6 in the peripheral blood of patients with chronic periodontitis. J Indian Soc Periodontol 2009;13(2):69-74
  • Sun A, Wang JT, Chia JS, Chiang CP. Serum interleukin-8 level is a more sensitive marker than serum interleukin-6 level in monitoring the disease activity of oral lichen planus. Br J Dermatol 2005;152(6):1187-92
  • Wong CK, Li EK, Ho CY, Lam CW. Elevation of plasma interleukin-18 concentration is correlated with disease activity in systemic lupus erythematosus. Rheumatology 2000;39(10):1078-81
  • Wiener E, Wanachiwanawin W, Chinprasertsuk S, et al. Increased serum levels of macrophage colony-stimulating factor (M-CSF) in alpha- and beta-thalassaemia syndromes: correlation with anaemia and monocyte activation. Eur J Haematol 1996;57(5):364-9
  • Kapadia SR, Yakoob K, Nader S, et al. Elevated circulating levels of serum tumor necrosis factor-alpha in patients with hemodynamically significant pressure and volume overload. J Am Coll Cardiol 2000;36(1):208-12
  • Pelsers MM, Morovat A, Alexander GJ, et al. Liver fatty acid-binding protein as a sensitive serum marker of acute hepatocellular damage in liver transplant recipients. Clin Chem 2002;48(11):2055-7
  • Alhadi HA, Fox KA. Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. QJM 2004;97(4):187-98
  • Chagan-Yasutan H, Saitoh H, et al. Persistent elevation of plasma osteopontin levels in HIV patients despite highly active antiretroviral therapy. Tohoku J Exp Med 2009;218(4):285-92
  • Racusen LC, Monteil C, Sgrignoli A, et al. Cell lines with extended in vitro growth potential from human renal proximal tubule: Characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med 1997;129(3):318-29
  • Morin JP, Marouillat S, Lendormi C, Monteil C. Comparative impact of cephaloridine on glutathione and related enzymes in LLC-PK1, LLC-RK1, and primary cultures of rat and rabbit proximal tubule cells. Cell Biol Toxicol 1996;12(4-6):275-82
  • Monteil C, Marouillat S, Elkaz V, et al. Phenotypic characterization of the rabbit kidney cell line LLC-RK1 implication for pharmacotoxicological studies. Cell Biol Toxicol 1996;12(4-6):378-8
  • Prozialeck WC, Edwards JR, Lamar PC, Smith CS. Epithelial barrier characteristics and expression of cell adhesion molecules in proximal tubule-derived cell lines commonly used for in vitro toxicity studies. Toxicol In Vitro 2006;20(6):942-53
  • Chu JJ, Ng ML. Infection of polarized epithelial cells with flavivirus West Nile: polarized entry and egress of virus occur through the apical surface. J Gen Virol 2002;83(Pt 10):2427-35
  • McClane BA, Chakrabarti G. New insights into the cytotoxic mechanisms of Clostridium perfringens enterotoxin. Anaerobe 2004;10(2):107-14
  • Carranza-Rosales P, Said-Fernandez S, Sepulveda-Saavedra J, et al. Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage. Toxicology 2005;210(2-3):111-21
  • McNeil E, Capaldo CT, Macara IG. Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 2006;17(4):1922-32
  • Hayashi K. Role of tight junctions of polarized epithelial MDCK cells in the replication of herpes simplex virus type 1. J Med Virol 1995;47(4):323-9
  • Schiwek D, Endlich N, Holzman L, et al. Stable expression of nephrin and localization to cell-cell contacts in novel murine podocyte cell lines. Kidney Int 2004;66(1):91-101
  • Jenkinson SE, Chung GW, van Loon E, et al. The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch 2012;464(6):601-11
  • Prozialeck WC, Edwards JR. Cell adhesion molecules in chemically-induced renal injury. Pharmacol Ther 2007;114(1):74-93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.