244
Views
9
CrossRef citations to date
0
Altmetric
Review

Preclinical studies of dendrimer prodrugs

, PhD (Biostudies) (Associate Professor)

Bibliography

  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006;6:688-701
  • Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 2006;45:1198-215
  • Khandare J, Minko T. Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 2006;31:359-97
  • Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 1989;6:193-210
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-84
  • Greenwald RB, Conover CD, Choe YH. Poly(ethylene glycol) conjugated drugs and prodrugs: a comprehensive review. Crit Rev Ther Drug Carrier Syst 2000;17:101-61
  • Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 2005;30:294-324
  • Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J 1985;17:117-32
  • Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atom to macroscopic matter. Angew Chem Int Ed Engl 1990;29:138-75
  • Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 2009;109:3141-57
  • Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008;60:1037-55
  • Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev 2009;109:49-87
  • Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005;23:1517-26
  • Gajbhiye V, Kumar PV, Tekade RK, Jain NK. Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des 2007;13:415-29
  • D’Emanuele A, Attwood D. Dendrimer–drug interactions. Adv Drug Deliv Rev 2005;57:2147-62
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications−reflections on the field. Adv Drug Deliv Rev 2005;57:2106-29
  • Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 2010;110:1857-959
  • Kojima C. Design of stimuli-responsive dendrimers. Expert Opin Drug Deliv 2010;7:307-19
  • Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005;65:5317-24
  • Myc A, Kukowska-Latallo J, Cao P, et al. Targeting the efficacy of a dendrimer-based nanotherapeutic in heterogeneous xenograft tumors in vivo. Anticancer Drugs 2010;21:186-92
  • Ward BB, Dunham T, Majoros IJ, Baker JR. Targeted dendrimer chemotherapy in an animal model for head and neck squamous cell carcinoma. J Oral Maxillofac Surg 2011;69:2452-9
  • Thomas TP, Goonewardena SN, Majoros IJ, et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 2011;63:2671-80
  • Jiang YY, Tang GT, Zhang LH, et al. PEGylated PAMAM dendrimers as a potential drug delivery carrier: in vitro and in vivo comparative evaluation of covalently conjugated drug and noncovalent drug inclusion complex. J Drug Target 2010;18:389-403
  • Wu G, Barth RF, Yang WL, et al. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 2006;5:52-9
  • Kaminskas LM, Kelly BD, McLeod VM, et al. Capping methotrexate alpha-carboxyl groups enhances systemic exposure and retains the cytotoxicity of drug conjugated PEGylated polylysine dendrimers. Mol Pharm 2011;8:338-49
  • Lee CC, Gillies ER, Fox ME, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA 2006;103:16649-54
  • Calderon M, Welker P, Licha K, et al. Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. J Control Release 2011;151:295-301
  • She W, Luo K, Zhang C, et al. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials 2013;34:1613-23
  • Huang J, Gao F, Tang X, et al. Liver-targeting doxorubicin-conjugated polymeric prodrug with pH-triggered drug release profile. Polym Int 2010;59:1390-6
  • Pu Y, Chang S, Yuan H, et al. The anti-tumor efficiency of poly(L-glutamic acid) dendrimers with polyhedral oligomeric silsesquioxane cores. Biomaterials 2013;34:3658-66
  • Kaminskas LM, Kelly BD, McLeod VM, et al. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. J Control Release 2011;152:241-8
  • Kaminskas LM, McLeod VM, Kelly BD, et al. A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomedicine 2012;8:103-11
  • Kaminskas LM, McLeod VM, Kelly BD, et al. Doxorubicin-conjugated PEGylated dendrimers show similar tumoricidal activity but lower systemic toxicity when compared to PEGylated liposome and solution formulations in mouse and rat tumor models. Mol Pharm 2012;9:422-32
  • Kaminskas LM, McLeod VM, Ryan GM, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 2014;183:18-26
  • Zhu S, Hong M, Tang G, et al. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style. Biomaterials 2010;31:1360-71
  • Zhang L, Zhu S, Qian L, et al. RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for glioma. Eur J Pharm Biopharm 2011;79:232-40
  • Wang K, Zhang X, Liu Y, et al. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials 2014;35:8735-47
  • Etrych T, Kovar L, Strohalm J, et al. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy. J Control Release 2011;154:241-8
  • Etrych T, Strohalm J, Chytil P, et al. Novel star HPMA-based polymer conjugates for passive targeting to solid tumors. J Drug Target 2011;19:874-89
  • Etrych T, Strohalm J, Sirova M, et al. High-molecular weight star conjugates containing docetaxel with high anti-tumor activity and low systemic toxicity in vivo. Polym Chem 2015;6:160-70
  • Satsangi A, Roy SS, Satsangi RK, et al. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol Pharm 2014;11:1906-18
  • Lim J, Lo ST, Hill S, et al. Antitumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol Pharm 2012;9:404-12
  • Lee SM, Bala YS, Lee WK, et al. Antitumor and antiangiogenic active dendrimer/5-fluorouracil conjugates. J Biomed Mater Res Part A 2013;101:2306-12
  • Pan D, She W, Guo C, et al. PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials 2014;35:10080-92
  • Zhou Z, Ma X, Murphy CJ, et al. Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Angew Chem Int Ed Engl 2014;53:10949-55
  • Kojima C, Suehiro T, Watanabe K, et al. Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomater 2013;9:5673-80
  • Kojima C, Nishisaka E, Suehiro T, et al. The synthesis and evaluation of polymer prodrug/collagen hybrid gels for delivery into metastatic cancer cells. Nanomedicine 2013;9:767-75
  • Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 2011;40:2673-703
  • Lammers T, Kiessling F, Hennink WE, Storm GA. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 2010;7:1899-912
  • Xie J, Lee S, Chen X. Nanoparticle-based theranostic agent. Adv Drug Deliv Rev 2010;62:1064-79
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009;38:1759-82
  • Chang Y, Liu N, Chen L, et al. Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. J Mater Chem 2012;22:9594-601
  • Chang Y, Li Y, Meng X, et al. Dendrimer functionalized water soluble magnetic iron oxide conjugates as dual imaging probe for tumor targeting and drug delivery. Polym Chem 2013;4:789-94
  • Zhu J, Zheng L, Wen S, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2014;35:7635-46
  • Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nanotoday 2007;2:18-29
  • Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nanotoday 2007;2:30-8
  • Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 2006;24:62-7
  • Li XJ, Takashima M, Yuba E, et al. PEGylated PAMAM dendrimer-doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomaterials 2014;35:6576-84
  • Inapagolla R, Guru BR, Kurtoglu YE, et al. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 2010;399:140-7
  • Benchaala I, Mishra MK, Wykes SM, et al. Folate-functionalized dendrimers for targeting chlamydia-infected tissues in a mouse model of reactive arthritis. Int J Pharm 2014;466:258-65
  • Iezzi R, Guru BR, Glybina IV, et al. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 2012;33:979-88
  • Mishra MK, Beaty CA, Lesniak WG, et al. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 2014;8:2134-47
  • Burd I, Zhang F, Dada T, et al. Fetal uptake of intra-amniotically delivered dendrimers in a mouse model of intrauterine inflammation and preterm birth. Nanomedicine 2014;10:1343-51
  • Shrivastava PK, Singh R, Shrivastava SK. Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation. Chem Pap 2010;64:592-601
  • Najlah M, Freeman S, Attwood D, D’Emanuele A. Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm 2006;308:175-82
  • Shabat D. Self-immolative dendrimers as novel drug delivery platforms. J Polym Sci. Part A Polym Chem 2006;44:1569-78
  • Wei J, Shi J, Zhang J, et al. Design, synthesis and biological evaluation of enzymatically cleavable NSAIDs prodrugs derived from self-immolative dendritic scaffolds for the treatment of inflammatory diseases. Bioorg Med Chem 2013;21:4192-200
  • Sakuma S, Teraoka Y, Sagawa T, et al. Carboxyl group-terminated polyamidoamine dendrimers bearing glucosides inhibit intestinal hexose transporter-mediated d-glucose uptake. Eur J Pharm Biopharm 2010;75:366-74
  • Wu X, Yu G, Luo C, et al. Synthesis and evaluation of a nanoglobular dendrimer 5-aminosalicylic acid conjugate with a hydrolyzable schiff base spacer for treating retinal degeneration. ACS Nano 2014;8:153-61
  • Wu D, Yang JJ, Li JY, et al. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel. Biomaterials 2013;34:5036-47
  • Jansen JF, de Brabander-van den Berg EM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science 1994;266:1226-9
  • Moscicki AB, Kaul R, Ma Y, et al. Measurement of mucosal biomarkers in a phase 1 trial of intravaginal 3% StarPharma LTD 7013 gel (VivaGel) to assess expanded safety. J Acquir Immune Defic Syndr 2012;59:134-40
  • Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 2013;65:1316-30
  • Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EK. Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev 2011;63:547-54
  • Oerlemans C, Bult W, Bos M, et al. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm Res 2010;27:2569-89
  • Kojima C, Niki Y, Ogawa M, Magata Y. Prolonged local retention of subcutaneously injected polymers monitored by noninvasive SPECT imaging. Int J Pharm 2014;476:164-8
  • Sato K, Sasaki N, Svahn HA, Sato K. Microfluidics for nano-pathophysiology. Adv Drug Deliv Rev 2014;74:115-21
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechol 2014;32:760-72
  • Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007;130:601-10
  • Thoma CR, Zimmermann M, Agarkova I, et al. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 2014;69-70:29-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.