933
Views
30
CrossRef citations to date
0
Altmetric
Review

Nature and uses of fluorescent dyes for drug transporter studies

, , , &

Bibliography

  • Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9:215-36
  • Giacomini KM, Huang SM. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther 2013;94:3-9
  • Fukuda Y, Lian S, Schuetz JD, Leukemia and ABC. Transporters. Adv Cancer Res 2015;125:171-96
  • Fardel O, Kolasa E, Le Vee M. Environmental chemicals as substrates, inhibitors or inducers of drug transporters: implication for toxicokinetics, toxicity and pharmacokinetics. Expert Opin Drug Metab Toxicol 2012;8:29-46
  • Robert J, Jarry C. Multidrug resistance reversal agents. J Med Chem 2003;46:4805-17
  • Schuetz JD, Swaan PW, Tweedie DJ. The role of transporters in toxicity and disease. Drug Metab Dispos 2014;42:541-5
  • Prueksaritanont T, Chu X, Gibson C, et al. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J 2013;15:629-45
  • Brouwer KL, Keppler D, Hoffmaster KA, et al. In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther 2013;94:95-112
  • Jani M, Krajcsi P. In vitro methods in drug transporter interaction assessment. Drug Discov Today Technol 2014;12:e105-12
  • Zdrazil B, Chichester C, Zander Balderud L, et al. Transporter assays and assay ontologies: useful tools for drug discovery. Drug Discov Today Technol 2014;12:e47-54
  • Tegos GP, Evangelisti AM, Strouse JJ, et al. A high throughput flow cytometric assay platform targeting transporter inhibition. Drug Discov Today Technol 2014;12:e95-103
  • Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008;38:802-32
  • Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 1987;84:3004-8
  • Ludescher C, Gattringer Drach J, et al. Rapid functional assay for the detection of multidrug-resistant cells using the fluorescent dye rhodamine 123. Blood 1991;78(5):1385-7
  • Eytan GD, Regev R, Oren G, et al. Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate. Eur J Biochem 1997;248:104-12
  • Strouse JJ, Ivnitski-Steele I, Waller A, et al. Fluorescent substrates for flow cytometric evaluation of efflux inhibition in ABCB1, ABCC1, and ABCG2 transporters. Anal Biochem 2013;437:77-87
  • Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991;66:85-94
  • Vasconcelos FC, Cavalcanti GBJr, Silva KL, et al. Contrasting features of MDR phenotype in leukemias by using two fluorochromes: implications for clinical practice. Leuk Res 2007;31:445-54
  • Kuhnel JM, Perrot JY, Faussat AM, et al. Functional assay of multidrug resistant cells using JC-1, a carbocyanine fluorescent probe. Leukemia 1997;11:1147-55
  • Hirata N, Nakagawa M, Fujibayashi Y, et al. A chemical probe that labels human pluripotent stem cells. Cell Rep 2014;6:1165-74
  • Sarver JG, Klis WA, Byers JP, Erhardt PW. Microplate screening of the differential effects of test agents on Hoechst 33342, rhodamine 123, and rhodamine 6G accumulation in breast cancer cells that overexpress P-glycoprotein. J Biomol Screen 2002;7:29-34
  • Boesch M, Reimer D, Rumpold H, et al. DyeCycle Violet used for side population detection is a substrate of P-glycoprotein. Cytometry A 2012;81:517-22
  • Shapiro AB, Ling V. Transport of LDS-751 from the cytoplasmic leaflet of the plasma membrane by the rhodamine-123-selective site of P-glycoprotein. Eur J Biochem 1998;254:181-8
  • Bucana CD, Giavazzi R, Nayar R, et al. Retention of vital dyes correlates inversely with the multidrug-resistant phenotype of adriamycin-selected murine fibrosarcoma variants. Exp Cell Res 1990;190:69-75
  • Hawley TS, Riz I, Yang W, et al. Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1. Am J Hematol 2013;88:265-72
  • Homolya L, Hollo Z, Germann UA, et al. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem 1993;268:21493-6
  • Nelson EJ, Zinkin NT, Hinkle PM. Fluorescence methods to assess multidrug resistance in individual cells. Cancer Chemother Pharmacol 1998;42:292-9
  • Wang EJ, Casciano CN, Clement RP, Johnson WW. Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun 2001;289:580-5
  • Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY. Chem Soc Rev 2012;41:1130-72
  • Fellner S, Bauer B, Miller DS, et al. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 2002;110:1309-18
  • Didier A, Tiberghien F, Wenger R, Loor F. Detection of P-glycoprotein expression by tumoral cells with NBDL-CsA, a fluorescent derivative of cyclosporin A. Anticancer Drugs 1996;7:257-65
  • Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 2011(201):205-59
  • Mills CO, Rahman K, Coleman R, Elias E. Cholyl-lysylfluorescein: synthesis, biliary excretion in vivo and during single-pass perfusion of isolated perfused rat liver. Biochim Biophys Acta 1991;6:151-6
  • Holzinger F, Schteingart CD, Ton-Nu HT, et al. Fluorescent bile acid derivatives: relationship between chemical structure and hepatic and intestinal transport in the rat. Hepatology 1997;26:1263-71
  • De Bruyn T, Sempels W, Snoeys J, et al. Confocal imaging with a fluorescent bile acid analogue closely mimicking hepatic taurocholate disposition. J Pharm Sci 2014;103:1872-81
  • Mita S, Suzuki H, Akita H, et al. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos 2006;34:1575-81
  • de Waart DR, Hausler S, Vlaming ML, et al. Hepatic transport mechanisms of cholyl-L-lysyl-fluorescein. J Pharmacol Exp Ther 2010;334:78-86
  • Cole SP. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J Biol Chem 2014;289:30880-8
  • Feller N, Broxterman HJ, Wahrer DC, Pinedo HM. ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion. FEBS Lett 1995;368:385-8
  • Prechtl S, Roellinghoff M, Scheper R, et al. The multidrug resistance protein 1: a functionally important activation marker for murine Th1 cells. J Immunol 2000;164:754-61
  • Zhang J, Alston MA, Huang H, Rabin RL. Human T cell cytokine responses are dependent on multidrug resistance protein-1. Int Immunol 2006;18:485-93
  • Steinberg TH, Newman AS, Swanson JA, Silverstein SC. Macrophages possess probenecid-inhibitable organic anion transporters that remove fluorescent dyes from the cytoplasmic matrix. J Cell Biol 1987;105:2695-702
  • van Der Kolk DM, Vellenga E, van Der Veen AY, et al. Deletion of the multidrug resistance protein MRP1 gene in acute myeloid leukemia: the impact on MRP activity. Blood 2000;95:3514-19
  • Rychlik B, Balcerczyk A, Klimczak A, Bartosz G. The role of multidrug resistance protein 1 (MRP1) in transport of fluorescent anions across the human erythrocyte membrane. J Membr Biol 2003;193:79-90
  • Laupeze B, Amiot L, Courtois A, et al. Use of the anionic dye carboxy-2’,7’-dichlorofluorescein for sensitive flow cytometric detection of multidrug resistance-associated protein activity. Int J Oncol 1999;15:571-6
  • Saengkhae C, Loetchutinat C, Garnier-Suillerot A. Kinetic analysis of fluorescein and dihydrofluorescein effluxes in tumour cells expressing the multidrug resistance protein, MRP1. Biochem Pharmacol 2003;65:969-77
  • Van Luyn MJ, Muller M, Renes J, et al. Transport of glutathione conjugates into secretory vesicles is mediated by the multidrug-resistance protein 1. Int J Cancer 1998;76:55-62
  • Bagrij T, Klokouzas A, Hladky SB, Barrand MA. Influences of glutathione on anionic substrate efflux in tumour cells expressing the multidrug resistance-associated protein, MRP1. Biochem Pharmacol 2001;62:199-206
  • Shen H, Paul S, Breuninger LM, et al. Cellular and in vitro transport of glutathione conjugates by MRP. Biochemistry 1996;35:5719-25
  • Breen CM, Sykes DB, Baehr C, et al. Fluorescein-methotrexate transport in rat choroid plexus analyzed using confocal microscopy. Am J Physiol Renal Physiol 2004;287:4
  • Minderman H, Vanhoefer U, Toth K, et al. DiOC2(3) is not a substrate for multidrug resistance protein (MRP)-mediated drug efflux. Cytometry 1996;25:14-20
  • Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011(201):299-323
  • Heredi-Szabo K, Kis E, Molnar E, et al. Characterization of 5(6)-carboxy-2,’7’-dichlorofluorescein transport by MRP2 and utilization of this substrate as a fluorescent surrogate for LTC4. J Biomol Screen 2008;13:295-301
  • Lechner C, Reichel V, Moenning U, et al. Development of a fluorescence-based assay for drug interactions with human Multidrug Resistance Related Protein (MRP2; ABCC2) in MDCKII-MRP2 membrane vesicles. Eur J Pharm Biopharm 2010;75:284-90
  • Lai Y, Xing L, Poda GI, Hu Y. Structure-activity relationships for interaction with multidrug resistance protein 2 (ABCC2/MRP2): the role of torsion angle for a series of biphenyl-substituted heterocycles. Drug Metab Dispos 2007;35:937-45
  • Cantz T, Nies AT, Brom M, et al. MRP2, a human conjugate export pump, is present and transports fluo 3 into apical vacuoles of Hep G2 cells. Am J Physiol Gastrointest Liver Physiol 2000;278:G522-31
  • Forster F, Volz A, Fricker G. Compound profiling for ABCC2 (MRP2) using a fluorescent microplate assay system. Eur J Pharm Biopharm 2008;69:396-403
  • Hashimoto K, Uchiumi T, Konno T, et al. Trafficking and functional defects by mutations of the ATP-binding domains in MRP2 in patients with Dubin-Johnson syndrome. Hepatology 2002;36:1236-45
  • Gutmann H, Fricker G, Drewe J, et al. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol 1999;56:383-9
  • Masereeuw R, Notenboom S, Smeets PH, et al. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats. J Am Soc Nephrol 2003;14:2741-9
  • Greindl M, Foger F, Hombach J, Bernkop-Schnurch A. In vivo evaluation of thiolated poly(acrylic acid) as a drug absorption modulator for MRP2 efflux pump substrates. Eur J Pharm Biopharm 2009;72:561-6
  • Li T, Ito K, Horie T. Transport of fluorescein methotrexate by multidrug resistance-associated protein 3 in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 2003;285:G602-10
  • Teng S, Jekerle V, Piquette-Miller M. Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab Dispos 2003;31:1296-9
  • Ellis LC, Grant MH, Hawksworth GM, Weaver RJ. Quantification of biliary excretion and sinusoidal excretion of 5(6)-carboxy-2’,7’-dichlorofluorescein (CDF) in cultured hepatocytes isolated from Sprague Dawley, Wistar and Mrp2-deficient Wistar (TR(-)) rats. Toxicol In Vitro 2014;28:1165-75
  • Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 2008;29:200-7
  • Bai J, Lai L, Yeo HC, et al. Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bimane-glutathione. Int J Biochem Cell Biol 2004;36:247-57
  • Reichel V, Klas J, Fricker G, Masereeuw R. Fluo-cAMP is transported by multidrug resistance-associated protein isoform 4 in rat choroid plexus. J Neurochem 2010;115:200-8
  • Cheung L, Yu DM, Neiron Z, et al. Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen. Biochem Pharmacol 2014;22:00663-7
  • Slot AJ, Molinski SV, Cole SP. Mammalian multidrug-resistance proteins (MRPs). Essays Biochem 2011;50:179-207
  • Pratt S, Chen V, Perry WI3rd, et al. Kinetic validation of the use of carboxydichlorofluorescein as a drug surrogate for MRP5-mediated transport. Eur J Pharm Sci 2006;27:524-32
  • Jani M, Ambrus C, Magnan R, et al. Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014;88:1205-48
  • Minderman H, Suvannasankha A, O’Loughlin KL, et al. Flow cytometric analysis of breast cancer resistance protein expression and function. Cytometry 2002;48:59-65
  • Pick A, Muller H, Wiese M. Structure-activity relationships of new inhibitors of breast cancer resistance protein (ABCG2). Bioorg Med Chem 2008;16:8224-36
  • Antczak C, Wee B, Radu C, et al. A high-content assay strategy for the identification and profiling of ABCG2 modulators in live cells. Assay Drug Dev Technol 2014;12:28-42
  • Robey RW, Honjo Y, van de Laar A, et al. A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim Biophys Acta 2001;6:171-82
  • Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 2002;99:15649-54
  • Kohara H, Watanabe K, Shintou T, et al. The use of fluorescent indoline dyes for side population analysis. Biomaterials 2013;34:1024-32
  • Honjo Y, Hrycyna CA, Yan QW, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 2001;61:6635-9
  • Robey RW, Honjo Y, Morisaki K, et al. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 2003;89:1971-8
  • Ye ZW, Van Pelt J, Camus S, et al. Species-specific interaction of HIV protease inhibitors with accumulation of cholyl-glycylamido-fluorescein (CGamF) in sandwich-cultured hepatocytes. J Pharm Sci 2010;99:2886-98
  • Murray JW, Thosani AJ, Wang P, Wolkoff AW. Heterogeneous accumulation of fluorescent bile acids in primary rat hepatocytes does not correlate with their homogenous expression of ntcp. Am J Physiol Gastrointest Liver Physiol 2011;301:G60-8
  • De Bruyn T, Fattah S, Stieger B, et al. Sodium fluorescein is a probe substrate for hepatic drug transport mediated by OATP1B1 and OATP1B3. J Pharm Sci 2011;100:5018-30
  • de Graaf W, Hausler S, Heger M, et al. Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. J Hepatol 2011;54:738-45
  • Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 2012;52:135-51
  • Konig J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 2011(201):1-28
  • Bednarczyk D. Fluorescence-based assays for the assessment of drug interaction with the human transporters OATP1B1 and OATP1B3. Anal Biochem 2010;405:50-8
  • Gui C, Obaidat A, Chaguturu R, Hagenbuch B. Development of a cell-based high-throughput assay to screen for inhibitors of organic anion transporting polypeptides 1B1 and 1B3. Curr Chem Genomics 2010;4:1-8
  • Yamaguchi H, Takeuchi T, Okada M, et al. Screening of antibiotics that interact with organic anion-transporting polypeptides 1B1 and 1B3 using fluorescent probes. Biol Pharm Bull 2011;34:389-95
  • Baldes C, Koenig P, Neumann D, et al. Development of a fluorescence-based assay for screening of modulators of human organic anion transporter 1B3 (OATP1B3). Eur J Pharm Biopharm 2006;62:39-43
  • Forster S, Thumser AE, Hood SR, Plant N. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS ONE 2012;7:e33253
  • Schnell C, Shahmoradi A, Wichert SP, et al. The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes. Brain Struct Funct 2015;220:193-203
  • Burckhardt G. Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther 2012;136:106-30
  • Sweet DH, Eraly SA, Vaughn DA, et al. Organic anion and cation transporter expression and function during embryonic kidney development and in organ culture models. Kidney Int 2006;69:837-45
  • Nagle MA, Truong DM, Dnyanmote AV, et al. Analysis of three-dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J Biol Chem 2011;286:243-51
  • Duan P, Li S, Ai N, et al. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization. Mol Pharm 2012;9:3340-6
  • Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007;24:1227-51
  • Nies AT, Koepsell H, Winter S, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 2009;50:1227-40
  • Lee WK, Reichold M, Edemir B, et al. Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule. Am J Physiol Renal Physiol 2009;296:F1504-13
  • Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. J Med Chem 2011;54:4548-58
  • Massmann V, Edemir B, Schlatter E, et al. The organic cation transporter 3 (OCT3) as molecular target of psychotropic drugs: transport characteristics and acute regulation of cloned murine OCT3. Pflugers Arch 2014;466:517-27
  • Salomon JJ, Muchitsch VE, Gausterer JC, et al. The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol Pharm 2014;11:995-1006
  • Jouan E, Le Vee M, Denizot C, et al. The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCTs) 1 and 2. Fundam Clin Pharmacol 2014;28:65-77
  • Yasujima T, Ohta K, Inoue K, Yuasa H. Characterization of human OCT1-mediated transport of DAPI as a fluorescent probe substrate. J Pharm Sci 2011;100:4006-12
  • Yasujima T, Ohta KY, Inoue K, et al. Evaluation of 4’,6-diamidino-2-phenylindole as a fluorescent probe substrate for rapid assays of the functionality of human multidrug and toxin extrusion proteins. Drug Metab Dispos 2010;38:715-21
  • Motohashi H, Inui K. Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol Aspects Med 2013;34:661-8
  • Wittwer MB, Zur AA, Khuri N, et al. Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J Med Chem 2013;56:781-95
  • Smith DE, Clemencon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 2013;34:323-36
  • Groneberg DA, Doring F, Eynott PR, et al. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1. Am J Physiol Gastrointest Liver Physiol 2001;281:G697-704
  • Landowski CP, Han HK, Lee KD, Amidon GL. A fluorescent hPept1 transporter substrate for uptake screening. Pharm Res 2003;20:1738-45
  • Bahadduri PM, Ray A, Khandelwal A, Swaan PW. Design of high-affinity peptide conjugates with optimized fluorescence quantum yield as markers for small peptide transporter PEPT1 (SLC15A1). Bioorg Med Chem Lett 2008;18:2555-7
  • Groneberg DA, Eynott PR, Doring F, et al. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Thorax 2002;57:55-60
  • Ziemann C, Burkle A, Kahl GF, Hirsch-Ernst KI. Reactive oxygen species participate in mdr1b mRNA and P-glycoprotein overexpression in primary rat hepatocyte cultures. Carcinogenesis 1999;20:407-14
  • Fardel O, Lecureur V, Corlu A, Guillouzo A. P-glycoprotein induction in rat liver epithelial cells in response to acute 3-methylcholanthrene treatment. Biochem Pharmacol 1996;51:1427-36
  • Notenboom S, Wouterse AC, Peters B, et al. Increased apical insertion of the multidrug resistance protein 2 (MRP2/ABCC2) in renal proximal tubules following gentamicin exposure. J Pharmacol Exp Ther 2006;318:1194-202
  • Mason CW, Lee GT, Dong Y, et al. Effect of prostaglandin E2 on multidrug resistance transporters in human placental cells. Drug Metab Dispos 2014;42:2077-86
  • Holle SK, Ciarimboli G, Edemir B, et al. Properties and regulation of organic cation transport in freshly isolated mouse proximal tubules analyzed with a fluorescence reader-based method. Pflugers Arch 2011;462:359-69
  • Bucher S, Le Vee M, Jouan E, Fardel O. Regulation of hepatic drug transporter activity and expression by organochlorine pesticides. J Biochem Mol Toxicol 2014;28:119-28
  • Payen L, Courtois A, Campion JP, et al. Characterization and inhibition by a wide range of xenobiotics of organic anion excretion by primary human hepatocytes. Biochem Pharmacol 2000;60:1967-75
  • Morjani H, Aouali N, Belhoussine R, et al. Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int J Cancer 2001;94:157-65
  • Olsavsky KM, Page JL, Johnson MC, et al. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues. Toxicol Appl Pharmacol 2007;222:42-56
  • Kappelmayer J, Karaszi E, Telek B, Jakab K. “Pros and cons” on how to measure multidrug resistance in leukemias. Leuk Lymphoma 2002;43:711-17
  • Ramesh R, Kozhaya L, McKevitt K, et al. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med 2014;211:89-104
  • Chaudhary PM, Mechetner EB, Roninson IB. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 1992;80:2735-9
  • Klimecki WT, Futscher BW, Grogan TM, Dalton WS. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 1994;83:2451-8
  • Ludescher C, Pall G, Irschick EU, Gastl G. Differential activity of P-glycoprotein in normal blood lymphocyte subsets. Br J Haematol 1998;101:722-7
  • Pilarski LM, Paine D, McElhaney JE, et al. Multidrug transporter P-glycoprotein 170 as a differentiation antigen on normal human lymphocytes and thymocytes: modulation with differentiation stage and during aging. Am J Hematol 1995;49:323-35
  • Giraud C, Decleves X, Perrot JY, et al. High levels of P-glycoprotein activity in human lymphocytes in the first 6 months of life. Clin Pharmacol Ther 2009;85:289-95
  • Haraguchi S, Ho SK, Morrow M, et al. Developmental regulation of P-glycoprotein activity within thymocytes results in increased anti-HIV protease inhibitor activity. J Leukoc Biol 2011;90:653-60
  • Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002;99:507-12
  • Smalley MJ, Clarke RB. The mammary gland “side population”: a putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia 2005;10:37-47
  • Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 2002;20:11-20
  • Laupeze B, Amiot L, Payen L, et al. Multidrug resistance protein (MRP) activity in normal mature leukocytes and CD34-positive hematopoietic cells from peripheral blood. Life Sci 2001;68:1323-31
  • Laupeze B, Amiot L, Bertho N, et al. Differential expression of the efflux pumps P-glycoprotein and multidrug resistance-associated protein in human monocyte-derived dendritic cells. Hum Immunol 2001;62:1073-80
  • Lamy T, Drenou B, Grulois I, et al. Multi-drug resistance (MDR) activity in acute leukemia determined by rhodamine 123 efflux assay. Leukemia 1995;9:1549-55
  • Ludescher C, Thaler J, Drach D, et al. Detection of activity of P-glycoprotein in human tumour samples using rhodamine 123. Br J Haematol 1992;82:161-8
  • Ino T, Miyazaki H, Isogai M, et al. Expression of P-glycoprotein in de novo acute myelogenous leukemia at initial diagnosis: results of molecular and functional assays, and correlation with treatment outcome. Leukemia 1994;8:1492-7
  • Marzac C, Teyssandier I, Calendini O, et al. Flt3 internal tandem duplication and P-glycoprotein functionality in 171 patients with acute myeloid leukemia. Clin Cancer Res 2006;12:7018-24
  • Ludescher C, Hilbe W, Eisterer W, et al. Low incidence of activity of P-glycoprotein (P-170) in de novo acute lymphoblastic leukemia determined by a flow cytometric assay. Blood 1993;82:3505-7
  • Grulois I, Fardel O, Drenou B, et al. Multidrug resistance in B-cell chronic lymphocytic leukemia. Acta Haematol 1995;94:78-83
  • Perez-Simon JA, Valverde B, Martinez A, et al. Correlation of rhodamine 123 efflux by neoplastic plasma cells with clinical and biological characteristics of multiple myeloma. Cytometry 1999;38:24-9
  • Drenou B, Lamy T, Amiot L, et al. CD3- CD56+ non-Hodgkin’s lymphomas with an aggressive behavior related to multidrug resistance. Blood 1997;89:2966-74
  • Shaffer BC, Gillet JP, Patel C, et al. Drug resistance: still a daunting challenge to the successful treatment of AML. Drug Resist Updat 2012;15:62-9
  • Hirsch P, Tang R, Marzac C, et al. Prognostic impact of high ABC transporter activity in 111 adult acute myeloid leukemia patients with normal cytogenetics when compared to FLT3, NPM1, CEBPA and BAALC. Haematologica 2012;97:241-5
  • Ludescher C, Eisterer W, Hilbe W, et al. Low frequency of activity of P-glycoprotein (P-170) in acute lymphoblastic leukemia compared to acute myeloid leukemia. Leukemia 1995;9:350-6
  • Wuchter C, Leonid K, Ruppert V, et al. Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia. Haematologica 2000;85:711-21
  • Laupeze B, Amiot L, Drenou B, et al. High multidrug resistance protein activity in acute myeloid leukaemias is associated with poor response to chemotherapy and reduced patient survival. Br J Haematol 2002;116:834-8
  • Benderra Z, Faussat AM, Sayada L, et al. MRP3, BCRP, and P-glycoprotein activities are prognostic factors in adult acute myeloid leukemia. Clin Cancer Res 2005;11:7764-72
  • van der Kolk DM, Vellenga E, Scheffer GL, et al. Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia. Blood 2002;99:3763-70
  • Plasschaert SL, van der Kolk DM, de Bont ES, et al. The role of breast cancer resistance protein in acute lymphoblastic leukemia. Clin Cancer Res 2003;9:5171-7
  • Richaud-Patin Y, Soto-Vega E, Jakez-Ocampo J, Llorente L. P-glycoprotein in autoimmune diseases. Autoimmun Rev 2004;3:188-92
  • Zhang B, Shi Y, Lei TC. Detection of active P-glycoprotein in systemic lupus erythematosus patients with poor disease control. Expert Ther Med 2012;4:705-10
  • Levy AS, Cunningham-Rundles S, Mazza B, et al. High P-glycoprotein-mediated export observed in patients with a history of idiopathic thrombocytopenic purpura. Br J Haematol 2002;118:836-8
  • Tsujimura S, Saito K, Nawata M, et al. Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis. Ann Rheum Dis 2008;67:380-8
  • Henmi K, Yoshida M, Yoshikawa N, Hirano T. P-glycoprotein functions in peripheral-blood CD4+ cells of patients with systemic lupus erythematosus. Biol Pharm Bull 2008;31:873-8
  • Hulgan T, Donahue JP, Hawkins C, et al. Implications of T-cell P-glycoprotein activity during HIV-1 infection and its therapy. J Acquir Immune Defic Syndr 2003;34:119-26
  • Bossi P, Legrand O, Faussat AM, et al. P-glycoprotein in blood CD4 cells of HIV-1-infected patients treated with protease inhibitors. HIV Med 2003;4:67-71
  • Bramuglia GF, Cortada CM, Curras V, et al. Relationship between P-glycoprotein activity measured in peripheral blood mononuclear cells and indinavir bioavailability in healthy volunteers. J Pharm Sci 2009;98:327-36
  • Payen L, Delugin L, Courtois A, et al. Reversal of MRP-mediated multidrug resistance in human lung cancer cells by the antiprogestatin drug RU486. Biochem Biophys Res Commun 1999;258:513-18
  • Ivnitski-Steele I, Larson RS, Lovato DM, et al. High-throughput flow cytometry to detect selective inhibitors of ABCB1, ABCC1, and ABCG2 transporters. Assay Drug Dev Technol 2008;6:263-76
  • Matsson P, Englund G, Ahlin G, et al. A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther 2007;323:19-30
  • Henrich CJ, Bokesch HR, Dean M, et al. A high-throughput cell-based assay for inhibitors of ABCG2 activity. J Biomol Screen 2006;11:176-83
  • De Bruyn T, van Westen GJ, Ijzerman AP, et al. Structure-based identification of OATP1B1/3 inhibitors. Mol Pharmacol 2013;83:1257-67
  • Klinkhammer W, Muller H, Globisch C, et al. Synthesis and biological evaluation of a small molecule library of 3rd generation multidrug resistance modulators. Bioorg Med Chem 2009;17:2524-35
  • Rangel LP, Winter E, Gauthier C, et al. New structure-activity relationships of chalcone inhibitors of breast cancer resistance protein: polyspecificity toward inhibition and critical substitutions against cytotoxicity. Drug Des Devel Ther 2013;7:1043-52
  • Zeino M, Paulsen MS, Zehl M, et al. Identification of new P-glycoprotein inhibitors derived from cardiotonic steroids. Biochem Pharmacol 2015;93:11-24
  • Ansbro MR, Shukla S, Ambudkar SV, et al. Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference. PLoS One 2013;8:e60334
  • Tang H, Shen DR, Han YH, et al. Development of novel, 384-well high-throughput assay panels for human drug transporters: drug interaction and safety assessment in support of discovery research. J Biomol Screen 2013;18:1072-83
  • Colombo F, Armstrong C, Duan J, Rioux N. A high throughput in vitro mrp2 assay to predict in vivo biliary excretion. Xenobiotica 2012;42:157-63
  • Noel G, Le Vee M, Moreau A, et al. Functional expression and regulation of drug transporters in monolayer- and sandwich-cultured mouse hepatocytes. Eur J Pharm Sci 2013;49:39-50
  • Nakanishi T, Ikenaga M, Fukuda H, et al. Application of quantitative time-lapse imaging (QTLI) for evaluation of Mrp2-based drug-drug interaction induced by liver metabolites. Toxicol Appl Pharmacol 2012;263:244-50
  • Reichel V, Masereeuw R, van den Heuvel JJ, et al. Transport of a fluorescent cAMP analog in teleost proximal tubules. Am J Physiol Regul Integr Comp Physiol 2007;293:R2382-9
  • Masereeuw R, Russel FG, Miller DS. Multiple pathways of organic anion secretion in renal proximal tubule revealed by confocal microscopy. Am J Physiol 1996;271:F1173-82
  • Weiss M, Liu X, Thorling CA, Roberts MS. Functional characterization of hepatic transporters using intravital microscopy. Eur J Pharm Sci 2013;49:845-9
  • Thorling CA, Dancik Y, Hupple CW, et al. Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo. J Biomed Opt 2011;16:086013
  • Thorling CA, Liu X, Burczynski FJ, et al. Intravital multiphoton microscopy can model uptake and excretion of fluorescein in hepatic ischemia-reperfusion injury. J Biomed Opt 2013;18:101306
  • Masereeuw R, Moons MM, Russel FG. Rhodamine 123 accumulates extensively in the isolated perfused rat kidney and is secreted by the organic cation system. Eur J Pharmacol 1997;321:315-23
  • Zamek-Gliszczynski MJ, Xiong H, Patel NJ, et al. Pharmacokinetics of 5 (and 6)-carboxy-2’,7’-dichlorofluorescein and its diacetate promoiety in the liver. J Pharmacol Exp Ther 2003;304:801-9
  • Cygalova LH, Hofman J, Ceckova M, Staud F. Transplacental pharmacokinetics of glyburide, rhodamine 123, and BODIPY FL prazosin: effect of drug efflux transporters and lipid solubility. J Pharmacol Exp Ther 2009;331:1118-25
  • Parasrampuria R, Mehvar R. Effects of P-glycoprotein and Mrp2 inhibitors on the hepatobiliary disposition of Rhodamine 123 and its glucuronidated metabolite in isolated perfused rat livers. J Pharm Sci 2010;99:455-66
  • Chandra P, Johnson BM, Zhang P, et al. Modulation of hepatic canalicular or basolateral transport proteins alters hepatobiliary disposition of a model organic anion in the isolated perfused rat liver. Drug Metab Dispos 2005;33:1238-43
  • Nezasa K, Tian X, Zamek-Gliszczynski MJ, et al. Altered hepatobiliary disposition of 5 (and 6)-carboxy-2’,7’-dichlorofluorescein in Abcg2 (Bcrp1) and Abcc2 (Mrp2) knockout mice. Drug Metab Dispos 2006;34:718-23
  • de Gier RP, Feitz WF, Masereeuw R, et al. Anionic and cationic drug secretion in the isolated perfused rat kidney after neonatal surgical induction of ureteric obstruction. BJU Int 2003;92:452-8
  • Shukla S, Skoumbourdis AP, Walsh MJ, et al. Synthesis and characterization of a BODIPY conjugate of the BCR-ABL kinase inhibitor Tasigna (nilotinib): evidence for transport of Tasigna and its fluorescent derivative by ABC drug transporters. Mol Pharm 2011;8:1292-302
  • Sugano K, Kansy M, Artursson P, et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 2010;9:597-614
  • Johnson LV, Walsh ML, Chen LB. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 1980;77:990-4
  • Chaoui D, Faussat AM, Majdak P, et al. JC-1, a sensitive probe for a simultaneous detection of P-glycoprotein activity and apoptosis in leukemic cells. Cytometry B Clin Cytom 2006;70:189-96
  • Legrand O, Simonin G, Beauchamp-Nicoud A, et al. Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia. Blood 1999;94:1046-56
  • Bentz J, O’Connor MP, Bednarczyk D, et al. Variability in P-glycoprotein inhibitory potency (IC50) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug Metab Dispos 2013;41:1347-66
  • Ellens H, Deng S, Coleman J, et al. Application of receiver operating characteristic analysis to refine the prediction of potential digoxin drug interactions. Drug Metab Dispos 2013;41:1367-74
  • Poirier A, Cascais AC, Bader U, et al. Calibration of in vitro multidrug resistance protein 1 substrate and inhibition assays as a basis to support the prediction of clinically relevant interactions in vivo. Drug Metab Dispos 2014;42:1411-22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.