4,835
Views
110
CrossRef citations to date
0
Altmetric
Review

Time-dependent CYP inhibition

, &
Pages 51-66 | Published online: 01 Feb 2007

Bibliography

  • HODGSON J: ADMET – turning chemicals into drugs. Nat. Biotechnol. (2001) 19:722-726.
  • RILEY RJ: The potential pharmacological and toxicological impact of P450 screening. Curr. Opin. Drug Discov. Dev. (2001) 4:45-54.
  • LAZAROU J, POMERANZ BH, COREY PN: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. J. Am. Med. Assoc. (1998) 279:1200-1205.
  • RILEY RJ, GRIME K: Metabolic screening in vitro: metabolic stability, CYP inhibition and induction. Drug Discovery Today: Technologies (2004) 1:365-372.
  • ROSTAMI-HODJEGAN A, TUCKER G: ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions. Drug Discovery Today: Technologies (2004) 1:441-448.
  • SILVERMAN RB: Mechanism-Based Enzyme Inactivation. In: Chemistry and Enzymology (Vol. 1). CRC Press, Boca Raton, FL, USA (1988):3-30.
  • GHANBARI J, ROWLAND-YEO K, BLOOMER JC et al.: A critical evaluation of the experimental design of studies of mechanism based enzyme inhibition, with implications for in vitro–in vivo extrapolation. Curr. Drug. Metab. (2006) 7:315-334.
  • ZHOU S, YUNG CHAN S, CHER GOH B et al.: Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin. Pharmacokinet. (2005) 44(3):279-304.
  • CULM-MERDEK KE, VON MOLTKE LL, GAN L et al.: Effect of extended exposure to grapefruit juice on cytochrome P450 3A activity in humans: comparison with ritonavir. Clin. Pharmacol. Ther. (2006) 79(3):243-254.
  • PALOVAARA S, KIVISTO KT, TAPANAINEN P et al.: Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1′-hydroxylation. Br. J. Clin. Pharmacol. (2000) 50(4):333-337.
  • BACKMAN JT, WANG JS, WEN X et al.: Mibefradil but not isradipine substantially elevates the plasma concentrations of the CYP3A4 substrate triazolam. Clin. Pharmacol. Ther. (1999) 66(4):401-407.
  • ITO K, IWATSUBO T, KANAMITSU S et al.: Prediction of pharmacokinetic alterations caused by drug–drug interactions: metabolic interaction in the liver. Pharmacol. Rev. (1998) 50(3):387-412.
  • EVANS DC, WATT AP, NICOLL-GRIFFITH DA et al.: Drug–protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem. Res. Toxicol. (2004) 17(1):3-16.
  • RILEY RJ AND KENNA JG: Cellular models for ADMET predictions and evaluation of drug–drug interactions. Curr. Opin. Drug Discov. Dev. (2004) 7:86-99.
  • HINSON JA, PUMFORD NR, NELSON SD: The role of metabolic activation in drug toxicity. Drug Metab. Rev. (1994) 26(1-2):395-412.
  • LUO G, CUNNINGHAM M, KIM S et al.: CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab. Dispos (2002) 30(7):795-804.
  • MCGINNITY DF, BERRY AJ, KENNY JR et al.: Evaluation of time-dependent cytochrome P450 inhibition using cultured human hepatocytes. Drug Metab. Dispos. (2006) 34(8):1291-1300.
  • SCHENKMAN JB, WILSON BJ, CINTI DL: Dimethylaminoethyl 2,2-diphenylvalerate HCl (SKF 525-A) – in vivo and in vitro effects of metabolism by rat liver microsomes-formation of an oxygenated complex. Biochem. Pharmacol. (1972) 21(17):2373-2383.
  • BUENING MK, FRANKLIN MR: The formation of complexes absorbing at 455 nm from cytochrome P450 and metabloites of compounds related to SKF 525-A. Drug Metab. Dispos. (1974) 2(4):386-390.
  • BENSOUSSAN C, DELAFORGE M, MANSUY D: Particular ability of cytochromes P450 3A to form inhibitory P450-iron-metabolite complexes upon metabolic oxidation of aminodrugs. Biochem. Pharmacol. (1995) 49(5):591-602.
  • FRANKLIN MR: Enhanced rates of cytochrome P450 metabolite-intermediate complex formation from nonmacrolide amines in rifampicin-treated rabbit liver microsomes. Drug Metab. Dispos. (1995) 23(12):1379-1382.
  • MA B, PRUEKSARITANONT T, LIN JH: Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab. Dispos. (2000) 28(2):125-130.
  • ZHOU XJ, JONES DR, WANG YH et al.: Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica (2002) 32(10):863-878.
  • BERTELSEN KM, VENKATAKRISHNAN K, VON MOLTKE LL et al.: Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: comparison with fluoxetine and quinidine. Drug Metab. Dispos. (2003) 31(3):289-293.
  • MCCONN DJ, LIN YS, ALLEN K et al.: Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab. Dispos. (2004) 32:1083-1091.
  • HEYDARI A, YEO KR, LENNARD MS et al.: Mechanism-based inactivation of CYP2D6 by methylenedioxy- methamphetamine. Drug Metab Dispos. (2004) 32(11):1213-1217.
  • ERNEST CS, HALL SD, JONES DR: Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J. Pharmacol. Exp. Ther. (2005) 312(2):583-591.
  • PESSAYRE D, LARREY D, VITAUX J et al.: Formation of an inactive cytochrome P450 Fe(II)-metabolite complex after administration of troleandomycin in humans. Biochem. Pharmacol. (1982) 31(9):1699-1704.
  • MAYHEW BS, JONES DR, HALL SD: An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab. Dispos. (2000) 28(9):1031-1037.
  • JONES DR, GORSKI JC, HAMMAN MA et al.: Diltiazem inhibition of cytochrome P450 3A activity is due to metabolite intermediate complex formation. J. Pharmacol. Exp. Ther. (1999) 290(3):1116-1125.
  • FRANKLIN MR: Inhibition of mixed-functtion oxidations by substrates forming reduced cytochrome P450 metaboic intermediate complexes. Pharmacol. Ther. (1977) 2:227-245.
  • KOENIGS LL AND TRAGER WF, Mechanism-based inactivation of P450 2A6 by furanocoumarins. Biochemistry (1998) 37(28):10047-10061.
  • VOORMAN RL, MAIO SM, PAYNE NA et al.: Microsomal metabolism of delavirdine: evidence for mechanism-based inactivation of human cytochrome P450 3A. J. Pharmacol. Exp. Ther. (1998) 287(1):381-388.
  • KOENIGS LL, PETER RM, HUNTER AP et al.: Electrospray ionization mass spectrometric analysis of intact cytochrome P450: identification of tienilic acid adducts to P450 2C9. Biochemistry (1999) 38(8):2312-2319.
  • HE K, WOOLF TF, HOLLENBERG PF: Mechanism-based inactivation of cytochrome P450-3A4 by mifepristone (RU486). J. Pharmacol. Exp. Ther. (1999) 288(2):791-797.
  • O’DONNELL JP, DALVIE DK, KALGUTKAR AS et al.: Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen. Drug Metab. Dispos. (2003) 31(11):1369-1377.
  • KHOJASTEH-BAKHT SC, KOENIGS LL, PETER RM et al.: (R)-(+)-menthofuran is a potent, mechanism-based inactivator of human liver cytochrome P450 2A6. Drug Metab. Dispos. (1998) 26(7):701-704.
  • CHUN YJ, RYU SY, JEONG TC, KIM MY: Mechanism-based inhibition of human cytochrome P450 1A1 by rhapontigenin. Drug Metab Dispos. (2001) 29(4):389-393.
  • WALEY SG: Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem J. (1985) 227:843-849.
  • KNIGHT GC , WALEY SG: Inhibition of class C beta-lactamases by (1′R,6R)-6-(1′-hydroxy)benzylpenicillanic acid SS-dioxide. Biochem J. (1985) 225:435-439.
  • FAVREAU LV, PALAMANDA JR, LIN CC et al.: Improved reliability of the rapid microtiter plate assay using recombinant enzyme in predicting CYP2D6 inhibition in human liver microsomes. Drug Metab. Dispos. (1999) 27(4):436-439.
  • YAMAMOTO T, SUZUKI A, KOHNO Y: Application of microtiter plate assay to evaluate inhibitory effects of various compounds on nine cytochrome P450 isoforms and to estimate their inhibition patterns. Drug Metab. Pharmacokinet. (2002) 17:437-448.
  • YAN Z, RAFFERTY B, CALDWELL GW et al.: Rapidly distinguishing reversible and irreversible CYP450 inhibitors by using fluorometric kinetic analyses. Eur. J. Drug Metab. Pharmacokinet. (2002) 27(4):281-287.
  • NARITOMI Y, TERAMURA Y, TERASHITA S et al.: (2004) Utility of microtiter plate assays for human cytochrome P450 inhibition studies in drug discovery: application of simple method for detecting quasi-irreversible and irreversible inhibitors. Drug Metab. Pharmacokinet. (2004) 19:55-61.
  • MAURER TS, TABRIZI-FARD MA, FUNG HL: Impact of mechanism-based enzyme inactivation on inhibitor potency: implications for rational drug discovery. J. Pharm. Sci. (2000) 89(11):1404-1414.
  • ATKINSON A, KENNY JR, GRIME K: Automated assessment of the time-dependent inhibition of human cytochrome P450 enzymes using liquid chromatography-tandem mass spectrometry analysis. Drug Metab. Dispos. (2005) 33(11):1637-1647.
  • LIM HK, DUCZAK N Jr, BROUGHAM L et al.: Automated screening with confirmation of mechanism-based inactivation of CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP1A2 in pooled human liver microsomes. Drug Metab. Dispos. (2005) 33(8):1211-1219.
  • ITO K, IWATSUBO T, KANAMITSU S et al.: Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Ann. Rev. Pharmacol. Toxicol. (1998) 38:461-499.
  • ORTIZ DE MONTELLANO PR: Suicide inhibitors for drug metabolising enzymes: mechanisms and biological consequences (Chapter 3). In: Progress in Drug Metabolism: Volume 11. Taylor and Francis, New York, USA (1988):99-148.
  • YANG J, JAMEI M, YEO KR et al.: Kinetic values for mechanism-based enzyme inhibition: assessing the bias introduced by the conventional experimental protocol. Eur. J. Pharm. Sci. (2005) 26(3-4):334-340.
  • KITZ R AND WILSON IB: Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J. Biol. Chem. (1962) 237:3245-3249.
  • FONTANA E, DANSETTE PM, POLI SM: Cytochrome P450 enzymes mechanism based inhibitors: common sub-structures and reactivity. Curr. Drug Metab. (2005) 6(5):413-454.
  • HE K, YOU AI HE, SZKLARZ GD, HALPER JR, CORREIA MA: Secobarbital-mediated inactivation of cytochrome P450 2B1 and its active site mutants. Partitioning between heme and protein alkylation and epoxidation. J. Biol. Chem. (1996) 271(42):25864-25872.
  • HE K, FALICK AM, CHEN B, NILSSON F, CORREIA MA: Identification of the heme adduct and an active site peptide modified during mechanism-based inactivation of rat liver cytochrome P450 2B1 by secobarbital. Chem. Res. Toxicol. (1996) 9(3):614-622.
  • PRICKETT KS, BAILLIE TA: Metabolism of unsaturated derivatives of valproic acid in rat liver microsomes and destruction of cytochrome P450. Drug Metab. Dispos. (1986) 14(2):221-229.
  • SADEQUE AJ, FISHER MB, KORZEKWA KR, GONZALEZ FJ, RETTIE AE: Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J. Pharmacol. Exp. Ther. (1997) 283(2):698-703.
  • WEN X, WANG JS, KIVISTO KT, NEUVONEN PJ, BACKMAN JT: In vitro evaluation of valproic acid as an inhibitor of human cytochrome P450 isoforms: preferential inhibition of cytochrome P450 2C9 (CYP2C9). Br. J. Clin. Pharmacol. (2001) 52(5):547-553.
  • LIN HL, KENT UM, HOLLENBERG PF: Mechanism-based inactivation of cytochrome P450 3A4 by 17 alpha-ethynylestradiol: evidence for heme destruction and covalent binding to protein. J. Pharmacol. Exp. Ther. (2002) 301(1):160-167.
  • GUENGERICH FP: Mechanism-based inactivation of human liver microsomal cytochrome P450 IIIA4 by gestodene. Chem. Res. Toxicol. (1990) 3(4):363-371.
  • KOENIGS LL, TRAGER WF: Mechanism-based inactivation of cytochrome P450 2B1 by 8-methoxypsoralen and several other furanocoumarins. Biochemistry (1998) 37(38):13184-13193.
  • O’DONNELL JP, DALVIE DK, KALGUTKAR AS, OBACH RS: Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen. Drug Metab. Disp. (2003) 31(11):1369-1377.
  • KOENIGS LL, PETER RM, HUNTER AP et al.: Electrospray ionization mass spectrometric analysis of intact cytochrome P450: identification of tienilic acid adducts to P450 2C9. Biochemistry (1999) 38(8):2312-2319.
  • JEAN P, LOPEZ-GARCIA P, DANSETTE P, MANSUY D, GOLDSTEIN JL: Oxidation of tienilic acid by human yeast-expressed cytochromes P450 2C8, 2C9, 2C18 and 2C19. Evidence that this drug is a mechanism-based inhibitor specific for cytochrome P450 2C9. Eur. J. Biochem. (1996) 241(3):797-804.
  • HA-DUONG NT, DIJOLS S, MACHEREY AC et al.: Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19. Biochemistry (2001) 40(40):12112-12122.
  • WARD DP, TREVOR AJ, KALIR A et al.: Metabolism of phencyclidine. The role of iminium ion formation in covalent binding to rabbit microsomal protein. Drug Metab. Dispos. (1982) 10(6):690-695.
  • BRADY JF, DOKKO J, DI STEFANO EW, CHO AK: Mechanism-based inhibition of cytochrome P450 by heterocyclic analogues of phencyclidine. Drug Metab. Dispos. (1987) 15(5):648-652.
  • SHARMA U, ROBERTS ES, KENT UM, OWENS SM, HOLLENBERG PF: Metabolic inactivation of cytochrome P4502B1 by phencyclidine: immunochemical and radiochemical analyses of the protective effects of glutathione. Drug Metab. Dispos. (1997) 25(2):243-250.
  • JUSHCHYSHYN MI, WAHLSTROM JL, HOLLENBERG PF, WIENKERS LC: Mechanism of inactivation of human cytochrome P450 2B6 by phencyclidine. Drug Metab. Dispos. (2006) 34(9):1523-1529.
  • YAMAZAKI H, SHIMADA T: Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab. Dispos. (1998) 26(11):1053-1057.
  • DELAFORGE M, JAOUEN M, BOUILLE G: Inhibitory metabolite complex formation of methylenedioxymethamphetamine with rat and human cytochrome P450. Particular involvement of CYP 2D. Environ. Toxicol. Pharmacol. (1999) 7(3):153-158.
  • KALGUTKAR AS, GARDNER I, OBACH RS et al.: A comprehensive listing of bioactivation pathways of organic functional groups. Curr. Drug Metab. (2005) 6(3):161-225.
  • MANSUY D, DANSETTE PM: New biological reactive intermediates: metabolic activation of thiophene derivatives. Adv. Exp. Med. Biol. (1996) 387:1-6.
  • BONIERBALE E, VALADON P, PONS C et al.: Opposite behaviors of reactive metabolites of tienilic acid and its isomer toward liver proteins: use of specific anti-tienilic acid-protein adduct antibodies and the possible relationship with different hepatotoxic effects of the two compounds. Chem. Res. Toxicol. (1999) 12(3):286-296.
  • ABREO K, LABARRE J: Suprofen, acute renal failure, and hematuria. Ann. Intern. Med. (1986) 105(5):799.
  • SNYDER S, TEEHAN BP: Suprofen and renal failure. Ann. Intern. Med. (1987) 106(5):776.
  • CHEN LJ, HECHT SS, PETERSON LA: Characterization of amino acid and glutathione adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan. Chem. Res. Toxicol. (1997) 10(8):866-874.
  • LIU ZC, UETRECHT JP: Metabolism of ticlopidine by activated neutrophils: implications for ticlopidine-induced agranulocytosis. Drug Metab. Dispos. (2000) 28(7):726-730.
  • LU P, SCHRAG ML, SLAUGHTER DE et al.: Mechanism-based inhibition of human liver microsomal cytochrome P450 1A2 by zileuton, a 5-lipoxygenase inhibitor. Drug Metab. Dispos. (2003) 31(11):1352-1360.
  • EVANS DC, BAILLIE TA: Minimizing the potential for metabolic activation as an integral part of drug design. Curr. Opin. Drug Discov. Dev. (2005) 8(1):44-50.
  • MURRAY M: Drug-mediated inactivation of cytochrome P450. Clin. Exp. Pharmacol. Physiol. (1997) 24(7):465-470.
  • MURRAY M, MURRAY K: Mechanism-based inhibition of CYP activities in rat liver by fluoxetine and structurally similar alkylamines. Xenobiotica (2003) 10:973-987.
  • NGUYEN TL, GRUENKE LD, CASTAGNOLI N Jr: Metabolic N-demethylation of nicotine. Trapping of a reactive iminium species with cyanide ion. J. Med. Chem. (1976) 19(9):1168-1169.
  • HO B, CASTAGNOLI N Jr: Trapping of metabolically generated electrophilic species with cyanide ion: metabolism of 1-benzylpyrrolidine. J. Med. Chem. (1980) 23(2):133-139.
  • ZIEGLER R, HO B, CASTAGNOLI N Jr: Trapping of metabolically generated electrophilic species with cyanide ion: metabolism of methapyrilene. J. Med. Chem. (1981) 24(10):1133-1138.
  • ARGOTI D, LIANG L, CONTEH A et al.: Cyanide trapping of iminium ion reactive intermediates followed by detection and structure identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chem. Res. Toxicol. (2005) 18(10):1537-1544.
  • HANZLIK RP, TULLMAN RH: Suicidal inactivation of cytochrome P450 by cyclopropylamines. Evidence for cation-radical intermediates. J. Am. Chem. Soc. (1982) 104:2048-2050.
  • MACDONALD TL, ZIRVI K, BURKA LT, PEYMAN, P, GUENGERICH FP: Mechanism of cytochrome P450 inhibition by cyclopropylamines. J. Am. Chem. Soc. (1982) 104:2050-2052.
  • HADDOCK RE, JOHNSON AM, LANGLEY PF: Metabolic pathway of paroxetine in animals and man and the comparative pharmacological properties of its metabolites. Acta Psychiatr. Scand. Suppl. (1989) 350:24-26.
  • LI AP: A review of the common properties of drugs with idiosyncratic hepatotoxicity and the ‘multiple determinant hypothesis’ for the manifestation of idiosyncratic drug toxicity. Chem. Biol. Interact. (2002) 142(1-2):7-23.
  • ITO K, BROWN HS, HOUSTON JB: Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br.J. Clin. Pharmacol. (2004) 57(4):473-486.
  • GRIME K, RILEY RJ: The impact of in vitro binding on in vitro–in vivo extrapolations, projections of metabolic clearance and clinical drug–drug interactions. Curr. Drug Metab. (2006) 7:251-264.
  • OBACH RS, WALSKY RL, VENKATAKRISHNAN K et al.: In vitro cytochrome P450 inhibition data and the prediction of drug–drug interactions: qualitative relationships, quantitative predictions, and the rank-order approach. Clin. Pharmacol. Ther. (2005) 78(6):582-592.
  • BROWN HS, ITO K, GALETIN A et al.: Prediction of in vivo drug–drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br. J. Clin. Pharmacol. (2005) 60(5):508-518.
  • ITO K, HALLIFAX D, OBACH RS et al.: Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug–drug interactions: CYP2D6 paradigm. Drug Metab. Dispos. (2005) 33(6):837-844.
  • MCGINNITY DF, TUCKER J, TRIGG S, RILEY RJ: Prediction of CYP2C9-mediated drug–drug interactions: a comparison using data from recombinant enzymes and human hepatocytes. Drug Metab. Dispos. (2005) 33(11):1700-1707.
  • LIN JH, LU AY: Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Ann. Rev. Pharmacol Toxicol. (2001) 41:535-567.
  • WANG YH, JONES DR, HALL SD: Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab. Dispos. (2004) 32(2):259-266.
  • GALETIN A, BURT H, GIBBONS L et al.: Prediction of time-dependent CYP3A4 drug–drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metab. Dispos. (2006) 34(1):166-175.
  • ITO K, OGIHARA K, KANAMITSU S et al.: Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab. Dispos. (2003) 31(7):945-954.
  • KENNY JR, GRIME K: Pharmacokinetic consequences of time-dependent inhibition using the isolated perfused rat liver model. Xenobiotica (2006) 36(5):351-365.
  • WAROT D, BERGOUGNAN L, LAMIABLE D et al.: Troleandomycin-triazolam interaction in healthy volunteers: pharmacokinetic and psychometric evaluation. Eur. J. Clin. Pharmacol. (1987) 32(4):389-393.
  • PHILLIPS JP, ANTAL EJ, SMITH RB: A pharmacokinetic drug interaction between erythromycin and triazolam. J. Clin. Psychopharm. (1986) 6(5):297-299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.