430
Views
39
CrossRef citations to date
0
Altmetric
Review

Predictive models for oral drug absorption: from in silico methods to integrated dynamical models

, &
Pages 491-505 | Published online: 19 Oct 2007

Bibliography

  • BERGSTROM CAS: Computational models to predict aqueous drug solubility, permeability and intestinal absorption. Expert Opin. Drug Metab. Toxicol. (2005) 1(4):613-627.
  • WILLMANN S, LIPPERT J, SCHMITT W: From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin. Drug Metab. Toxicol. (2005) 1(1):159-168.
  • LIPKA E, AMIDON GL: Setting bioequivalence requirements for drug development based on preclinical data: optimizing oral drug delivery systems. J. Contr. Rel. (1999) 62:41-49.
  • LIPINSKI CA, LOMBARDO F, DOMINY BW et al.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. (1997) 23(1-3):3-25.
  • YALKOWSKY SH, JOHNSON JL, SANGHVI T, MACHATHA SG: A ‘rule of unity’ for human intestinal absorption. Pharm. Res. (2006) 23(10):2475-2481.
  • SANGHVI T, NI N, MAYERSOHN M, YALKOWSKY SH: Predicting passive intestinal absorption using a single absorption parameter. QSAR Comb. Sci. (2003) 22:247-257.
  • AMIDON GL, LENNERNAS H, SHAH VP, CRISON JR: A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. (1995) 12:413-420.
  • LENNERNAS H, ABRAHAMSSON B: The use of the biopharmaceutic classification in drug discovery and development: current status and future extension. In drug bioavailability, estimation of solubility, permeability, absorption and bioavailability. J. Pharm. Pharmacol. (2005) 57:273-285.
  • POLLI JE, YU LX, COOK JA et al.: Summary workshop report: Biopharmaceutics Classification System-implementation challenges and extension opportunities. J. Pharm. Sci. (2004) 93:1375-1381.
  • YU LX, AMIDON GL, POLLI JE. et al.: Biopharmaceutics Classification System: the scientific basis for biowaiver extensions. Pharm. Res. (2002) 19:921-925.
  • OH DM, CURL RL, AMIDON GL: Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans – a mathematical-model. Pharm. Res. (1993) 10(2):264-270.
  • LOBENBERG R, AMIDON GL: Modern bioavailability, bioequivalence and biopharmaceutics classification system: new scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. (2000) 50:3-12.
  • WU CY, BENET LZ: Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. (2005) 22(1):11-23.
  • RINAKI E, VALSAMI G, MACHERAS P: Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm. Res. (2003) 20(12):1917-1925.
  • GALIA E, NICOLAIDES E, HORTER D et al.: Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res. (1998) 15(5):698-705.
  • VERTZONI M, DRESSMAN J, BUTLER J, HEMPENSTALL J, REPPAS C: Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur. J. Pharm. Bioph. (2005) 60(3):413-417.
  • KALANTZI L, PERSSON E, POLENTARUTTI B et al.: Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm. Res. (2006) 23(6):1373-1381.
  • YALKOWSKY SH, VALVANI SC: Solubility and partitioning 1: solubility of nonelectrolytes in water. J. Pharm. Sci. (1980) 69(8):912-922.
  • YALKOWSKY SH: Solubility and partitioning V: dependence of solubility in melting point. J. Pharm. Sci. (1981) 70(8):971-973.
  • YALKOWSKY SH, PINAL R, BANERJEE S: Water solubility: a critique of the solvatochromic approach. J. Pharm. Sci (1988) 77(1):74-77.
  • YALKOWSKY SH, PINAL R: Estimation of the aqueous solubility of complex organic compounds. Chemosphere (1993) 26(7):1239-1261.
  • LI A, YALKOWSKY SH: Solubility of organic solutes in ethanol/water mixtures. J. Pharm. Sci. (1994) 83(12):1735-1740.
  • MYRDAL PB, MANKA AM, YALKOWSKY SH: Aquafac 3: aqueous functional group activity coefficients; application to the estimation of aqueous solubility. Chemosphere (1995) 30(9):1619-1637.
  • RAN Y, YALKOWSKY SH: Prediction of drug solubility by the general solubility equation (GSE). J. Chem. Inf. Comut. Sci. (2001) 41(2):354-357.
  • YALKOWSKY SH: Solubility and Solubilization in Aqueous Media. Oxford University Press, New York, USA (1999):67.
  • JAIN N, YALKOWSKY SH: Estimation of aqueous solubility I: application to organic nonelectrolytes. J. Pharm. Sci. (2001) 90(2):234-252.
  • MEYLAN W M, HOWARD PH: Estimating Log P with atom/fragments and water solubility with Log P. Perspect. Drug Discov. Des. (2000) 19:67-84.
  • HOU TJ, XIA K, ZHANG W, XU XJ: ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci. (2004) 44(1):266-275.
  • KUHNE R, EBERT RU, SCHUURMANN G: Model selection based on structural similarity-method description and application to water solubility prediction. J. Chem. Inf. Model (2006) 46(2):636-641.
  • LENNERNAS H: Human intestinal permeability. J. Pharm. Sci. (1998) 87(4):403-410.
  • HIDALGO IJ: Assessing the absorption of new pharmaceuticals. Curr. Top. Med. Chem. (2001) 1(5):385-401.
  • LIPINSKI CA, LOMBARDO F, DOMINY BW, FEENEY PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. (2001) 46:3-26.
  • KNUTSON L, ODLIND B, HALLGREN R: A new technique for segmental jejunal perfusion in man. Am. J. Gastroenterol. (1989) 84:1278-1284.
  • LENNERNAS H, AHRENSTEDT O, HALLGREN, KNUTSON L, RYDE M, PAALZOW LK: Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm. Res. (1992) 9:1243-1251.
  • HIDALGO IJ, RAUB TJ, BORCHARDT RT: Characterization of the human carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology (1989) 96(3):736-749.
  • CHIOU WL, BARVE A: Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm. Res. (1998) 15(11):1792-1795.
  • HOU T, WANG J, ZHANG W, WANG W, XU X: Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr. Med. Chem. (2006) 13(22):2653-2667.
  • ELLIOTT RL, AMIDON GL, LIGHTFOOT EN: A convective mass-transfer model for determining intestinal wall permeabilities – laminar-flow in a circular tube. J. Theor. Biol. (1980) 87:757-771.
  • AMIDON GL: In: Animal models for Oral Drug Delivery in Man. Crouthamel W, Saparu AC (Eds), American Pharmaceutical Association, Washington DC, USA (1983):1-25.
  • REN S, DAS A, LIEN EJ: QSAR analysis of membrane permeability to organic compounds. J. Drug Targeting (1996) 4:104-107.
  • HAMILTON HW, STEINBAUGH BA, STEWART BH et al.: Evaluation of physicochemical parameters important to the oral bioavalability of peptide like compounds: implications for the synthesis of rennin inhibitors. J. Med. Chem. (1995) 38:1446-1455.
  • ROTH BD, BOCAN TMA, BLANKLEY CJ et al.: Relationship between tissue selectivity and lipophilicity for inhibitors of HMG-GoA reductase. J. Med. Chem. (1991) 34:463-466.
  • HOLLANDER D, RICKETTS D, BOYD CAR: Importance of probe molecular geometry in determining intestinal permeability. Can. J.Gastroenterol. (1988) 2:A35-A38.
  • NOOK T, DOELKER E, BURI P: Intestinal absorption kinetics of various model drugs in relation to partition coefficients. Int. J. Pharmaceut. (1988) 43:119-129.
  • WALTER A, GUTKNECHT J: Permeability of the small nanolectrolytes through lipid bilayer membranes. J. Membr. Biol. (1988) 43:119-129.
  • PALM K, LUTHMAN K, UNGELL AL, STRANDLUND G, ARTURSSON P: Correlation of drug absorption with molecular surface properties. J. Pharm. Sci. (1996) 85:32-39.
  • VAN DE WATERBEEMD H, CAMENISCH G, FOLKERS G, RAEVSKY OA: Estimation of Caco-2 cell permeability using calculated molecular descriptors. Quant. Struct-Act. Relat. (1996) 15:480-490.
  • WINIWARTER S, BONHAM NM, AX F, HALLBERG A, LENNERNAS H, KARLEN A: Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. (1998) 41:4939-4949.
  • ECKER GF, NOE CR: In silico prediction models for blood–barrier permeation. Curr. Med. Chem. (2004) 11(12):1617-1628.
  • VAN DE WATERBEEMD H, GIFFORD E: ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug. Discov. (2003) 2(3):192-204.
  • DIDZIAPETRIS R, JAPERTAS P, ADVEEF A, PETRAUSKAS A: Classification analysis of P-glycoprotein substrate specificity. J. Drug Target (2003) 11(7):391-406.
  • SEELIG A, GEREBTZOFF G: Enhancement of drug absorption by noncharged detergents through membrane and P-glycoprotein binding. Expert Opin. Drug. Metab. Toxicol. (2006) 2(5):733-752.
  • SEELIG A: A general pattern for substrate recognition of P-glycoprotein. Eur. J. Biochem. (1998) 251:252-261
  • SEELIG A, LANDWOJTOWICZ E: Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur. J. Pharm. Sci. (2000) 12:31-41.
  • STOUCH TR, GUDMUNDSSON O: Progress in understanding the structure–activity relationships of P-glycoprotein. Adv. Drug Deliv. Rev. (2002) 54:315-328.
  • EKINS S, WALLER C, SWANN PW, RUCIANI G, WRIGHTON SA, WIKEL JH: Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Meth. (2000) 44:251-272.
  • ZHANG EY, PHELPS MA, CHENG C, EKINS S, SWAAN PW: Modeling active transport systems. Adv. Drug Deliv. Rev. (2002) 54:329-354.
  • MAHAR DOAN KM, HUMPHREYS JE, WEBSTER LO et al.: Passive permeability and P-glycoprotein mediated efflux differentiate CNS and non CNS marketed drugs. J. Pharmacol. Exp. Ther. (2002) 303:1029-1037.
  • GOMBAR VK, POLLI JW, HUMPHREYS JE, WRING SA, SERABJIT-SINCH CS: Predicting P-glycoprotein substrates by quantitative structure activity relationship model. J. Pharm. Sci. (2004) 93(4):957-967.
  • KALVASS JC, POLLACK GM: Kinetic considerations for the quantitative assessment of efflux activity and inhibition: implications for understanding and predicting the effects of efflux inhibition. Pharm. Res. (2007) 24(2):265-276.
  • DRESSMAN JB, FLEISHER D: Mixing-tank model for predicting dissolution rate control or oral absorption. J. Pharm. Sci. (1986) 75(2):109-116.
  • YU LX, AMIDON GL: Saturable small intestinal drug absorption in humans: modeling and interpretation of cefatrizine data. Eur. J. Pharmaceut. Biopharmaceut. (1998) 45(2):199-203.
  • CONG D, DOHERTY M, PANG KS: A new physiologically based, segregated-flow model to explain route-dependent intestinal metabolism. Drug Metab. Dispos. (2000) 28(2):224-235.
  • NOYES AA, WHITNEY WR: The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. (1897) 19:930-934.
  • NERNST W: Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. (1904) 47:52-55.
  • BRUNNER E: Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. (1904) 43:56-102.
  • LEVICH VG: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, NY, USA (1962).
  • WANG JZ, FLANAGAN DR: General solution for diffusion controlled dissolution of spherical particles. 1. Theory. J. Pharm. Sci. (1999) 88(7):731-738.
  • HIXSON AW, CROWELL JH: Dependence of reaction velocity upon surface and agitation. Ind. Eng. Chem. (1931) 23:923-931.
  • LANGENBUCHER F: Linearization of dissolution rate curves by the Weibull distribution. J. Pharm. Pharmacol. (1972) 24:979-981.
  • MACHERAS P, DOKOUMETZIDIS A: On the heterogeneity of drug dissolution and release. Pharm. Res. (2000) 17:108-112.
  • KOPELMAN R: Fractal reaction-kinetics science (1988) 241(4873):1620-1626.
  • DJORDJEVIC A, MENDAS I: A method for modeling in vitro dissolution profiles of drugs using γ distribution. Eur. J. Pharmaceut. Biopharmaceut. (1997) 44(2):215-217.
  • FARIN D, AVNIR D: Use of fractal geometry to determine effects of surface-morphology on drug dissolution. J. Pharm. Sci. (1992) 81(1):54-57.
  • VALSAMI G, MACHERAS P: Determination of fractal reaction dimension in dissolution studies. Eur. J. Pharm. Sci. (1995) 3(3):163-169.
  • DOKOUMETZIDIS A, MACHERAS P: A population growth model of dissolution. Pharm. Res. (1997) 14:1122-1126.
  • LANSKY P, LANSKA V, WEISS M: A stochastic differential equation model for drug dissolution and its parameters. J. Control. Release (2004) 100(2):267-274.
  • NICOLAIDES E, GALIA E, EFTHYMIOPOULOS C, DRESSMAN JB, REPPAS C: Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm. Res. (1999) 16(12):1876-1882.
  • LOBENBERG R, KRAMER J, SHAH VP, AMIDON GL, DRESSMAN JB: Dissolution testing as a prognostic tool for oral drug absorption: dissolution behavior of glibenclamide. Pharm. Res. (2000) 17(4):439-444.
  • DRESSMAN JB, REPPAS C: In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. (2000) 11:S73-S80.
  • NICOLAIDES E, SYMILLIDES M, DRESSMAN JB, REPPAS C: Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm. Res. (2001) 18(3):380-388.
  • KOSTEWICZ ES, BRAUNS U, BECKER R, DRESSMAN JB: Forecasting the oral absorption behavior of poorly soluble weak bases using solubility and dissolution studies in biorelevant media. Pharm. Res. (2002) 19(3):345-349.
  • SUNESEN VH, PEDERSEN BL, KRISTENSEN HG, MULLERTZ A: In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur. J. Pharm. Sci. (2005) 24(4):305-313.
  • FOTAKI N, SYMILLIDES M, REPPAS C: Canine versus in vitro data for predicting input profiles of L-sulpiride after oral administration. Eur. J. Pharm. Sci. (2005) 26(3-4):324-333.
  • WEI H, LOBENBERG R: Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci. (2006) 29(1):45-52.
  • PORTER CJ, CHARMAN WN: In vitro assessment of oral lipid based formulations. Adv. Drug. Deliv. Rev. (2001) 50:S127-S147.
  • PORTER CJ, KAUKONEN AM, TAILLARDAT-BERTSCHINGER A et al.: Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J. Pharm. Sci. (2004) 93(5):1110-1121.
  • PORTER CJ, TREVASKIS NL, CHARMAN WN: Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. (2007) 6(3):231-248.
  • CHRISTENSEN JO, SCHULTZ K, MOLLGAARD B, KRISTENSEN HG, MULLERTZ A: Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur. J. Pharm. Sci. (2004) 23(3):287-296.
  • DAHAN A, HOFFMAN A: Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm. Res. (2006) 23(9):2165-2174.
  • HIGUCHI T: Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. (1961) 50:874-875.
  • PEPPAS NA: Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. (1985) 60:110-111.
  • RITGER PL, PEPPAS NA: A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release (1987) 5:37-42.
  • SIEPMANN J, PEPPAS NA: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. (2001) 48:139-157.
  • MACHERAS P, ILIADIS A: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics: Homogeneous and Heterogeneous Approaches. Springer, New York, USA (2006).
  • KOSMIDIS K, ARGYRAKIS P, MACHERAS P: Fractal kinetics in drug release from finite fractal matrices. J. Chem. Phys. (2003) 119(12):6373-6377.
  • KOSMIDIS K, ARGYRAKIS P, MACHERAS P: A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function. Pharm. Res. (2003) 20(7):988-995.
  • TAYLOR GI: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. (1953) A 219:186-203.
  • DIGENIS GA, SANDEFER EP, PARR AF et al.: Gastrointestinal behavior of orally administered radiolabeled erythromycin pellets in man as determined by γ scintigraphy. J. Clin. Pharmacol. (1990) 30:621-631.
  • KELLY K, O'MAHONY B, LINDSAY B et al.: Comparison of the rates of disintegration, gastric emptying, and drug absorption following administration of a new and a conventional paracetamol formulation, using γ scintigraphy. Pharm. Res. (2003) 20(10):1668-1673.
  • SAWAMOTO T, HARUTA S, KUROSAKI Y et al.: Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J. Pharm. Pharmacol. (1997) 49(4):450-457.
  • WEITSCHIES W, WEDEMEYER J, STEHR R, TRAHMS L: Magnetic markers as a noninvasive tool to monitor gastrointestinal transit. IEEE Trans. Biomed. Eng. (1994) 41(2):192-195.
  • SINKO PJ, LEESMAN GD, AMIDON GL: Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharm. Res. (1991) 8:979-988.
  • YU LX, CRISON JR, AMIDON GL: Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int. J. Pharmaceut. (1996) 140(1):111-118.
  • YU LX, AMIDON GL: A compartmental absorption and transit model for estimating oral drug absorption. Int. J. Pharmaceut. (1999) 186(2):119-125.
  • AGORAM B, WOLTOSZ WS, BOLGER MB: Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev. (2001) 50:S41-S67.
  • GRASS GM: Simulation models to predict oral drug absorption from in vitro data. Adv. Drug Deliv. Rev. (1997) 23:199-219.
  • KIMURA T, HIGAKI K: Gastrointestinal transit and drug absorption. Biol. Pharm. Bull. (2002) 25(2):149-164.
  • NI PF, HO NFH, FOX JL et al.: Theoretical-model studies of intestinal drug absorption. 5. Non-steady-state fluid-flow and absorption. Int. J. Pharmaceut. (1980) 5(1):33-47.
  • WILLMANN S, SCHMITT W, KELDENICH J, DRESSMAN JB: A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm. Res. (2003) 20(11):1766-1771.
  • WILLMANN S, SCHMITT W, KELDENICH J, LIPPERT J, DRESSMAN JB: A physiological model for the estimation of the fraction dose absorbed in humans. J. Med. Chem. (2004) 47(16):4022-4031.
  • KALAMPOKIS A, ARGYRAKIS P, MACHERAS P: Heterogeneous tube model for the study of small intestinal transit flow. Pharm. Res. (1999) 16(1):87-91.
  • KALAMPOKIS A, ARGYRAKIS P, MACHERAS P: A heterogeneous tube model of intestinal drug absorption based on probabilistic concepts. Pharm. Res. (1999) 16(11):1764-1769.
  • PARROTT N, LAVE T: Prediction of intestinal absorption: comparative assessment of GASTROPLUS and IDEA. Eur. J. Pharm. Sci. (2002) 17:51-61.
  • PARROTT N, PAQUEREAU N, COASSOLO P, LAVE T: An evaluation of the utility of physiologically based models of pharmacokinetics in early drug discovery. J. Pharm. Sci. (2005) 94(10):2327-2343.
  • PARROTT N, JONES H, PAQUEREAU N, LAVE T: Application of full physiological models for pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to man. Basic Clin. Pharmacol. Toxicol. (2005) 96(3):193-199.
  • KUENTZ M, NICK S, PARROTT N, ROTHLISBERGER D: A strategy for preclinical formulation development using GastroPlus as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. Eur. J. Pharm. Sci. (2006) 27(1):91-99.
  • JONES HM, PARROTT N, OHLENBUSCH G, LAVE T: Predicting pharmacokinetic food effects using biorelevant solubility media and physiologically based modelling. Clin. Pharmacokinet. (2006) 45(12):1213-1226.
  • DE BUCK SS, SINHA VK, FENU LA et al.: The prediction of drug metabolism, tissue distribution, and bioavailability of 50 structurally diverse compounds in rat using mechanism-based absorption, distribution, and metabolism prediction tools. Drug Metab. Dispos. (2007) 35(4):649-659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.